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Abstract: Applying Kontsevich's iterated integral for tangles, we get an isotopy 
invariant of tangles. We give a method to compute the integral of a tangle combi- 
natorially from modified integrals of some simple tangles. We localize the integral 
by moving the end points of the tangle to an extreme configuration, and modify 
the integral so that it is convergent. By using a similar technique, we generalize 
Kontsevich's invariant to a framed tangle. 

Introduction 

After the Jones polynomial was discovered, many invariants of links are constructed. 
Almost all of them are coming from solutions of the quantum Yang-Baxter equa- 
tion. On the other hand, Vassiliev [25] constructed a wide family of knot invariants. 
Let Zh be a knot invariant coming from a solution R(h) of the Yang-Baxter equa- 
tion with a parameter h such that R(0) is the trivial solution. Then, dkzh/dhklh_o is 
contained in Vassiliev's family of invariants. Hence, Vassiliev's invariants include 
many invariants, e.g. the Alexander, Jones, Homily, Kauffman polynomials and their 
generalizations in [1, 17, 20, 22], etc. Kontsevich gives a universal construction of 
Vassiliev's invariant by using an "algebra of chord diagrams" and "iterated inte- 
grals." Let Vk denote the space of Vassilev's invariants of degree less than k + 1. 
By studying combinatorial properties of invariants in Vk, he constructs a module 
d(0 k) spanned by chord diagrams on a circle with relations in Fig. 1 which cor- 
respond to the combinatorial relations for Vassiliev's invariants given in [7]. He 

shows that Vk/Vk-1 = (~,~k))., the dual space of d ~  k). Let sJ~ = (~)~=0A~ k). Then 
d ~  has a graded algebra structure with a product coming from the connected sum 
of chord diagrams. The 4-term relation assures the well-definedness of the above 
product, i.e. the product does not depend on the positions of the strings we cut 
to produce the connected sum. Let ~40 denote the formal completion of d ~  with 
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a) 4-term relation 

g , , , , . / , , , , , , ,  t---\ =o 

b) f raming independence - " "  - "  x ,  N 
relation ,' = 0 

Fig. 1. 4-term relation and framing independence relation 

respect to the grading. For every knot K, we can define an invariant ~Z(K) E d o  
by using an iterated integral. Let z ! k ) (K)E  dd~ k) be the degree k part of  Z(K).  

m~ r d  (k)~* f(Z(IO(K)) E V~. On the other hand, for any 9 ~ F)~, there is For f E,~k=o~ 0 J , 
m~ r or such that 9(K) = f(~_,~=oZ(k)(K)) and ~(k) is universal in some f E ~ k = o ~ 0  1 

this sense. 
Now we define d ,  a linear span of chord diagrams with 4-term relations, but 

without the framing independence relation. There is a natural projection from d to 

d o .  We extend Z to a framed knot invariant ZT. 
The main purpose of this paper is to give a combinatorial description of Kontse- 

vich's integral of  knots, links and tangIes. We will consider R 3 as the product of  R 
x C with a fixed orientation. A point of  R 3 has coordinates (t,z), let z = x + iy. A 
plane {t}x C C R x  C is called horizontal. A tangle T is a 1-dimensional compact 
oriented piece-wise smooth submanifold of R 3 lying between two horizontal planes, 
called the top plane and the bottom plane of T, such that every boundary point of 
T is lying in the top and bottom plane. Two tangles T and T ~ are called equivalent 
if  there is an isotopy of R 3 sending T to U and the top (resp. bottom) plane of 
T to the top (resp, bottom) plane of  U. Kontsevich's integral is generalized to an 
invariant of  equivalence classes of  tangles. We assume that a tangle T is contained 
in R x R c R x C except a neighborhood of each double point with respect to 
the projection R • C ~ R • R. Especially the boundary points of  T are con- 
tained in R x R. Let r = (rl,r2 . . . . .  rk)(rj = •  and s = (sl,s2 . . . .  ,se)(sj = ~zl) 
such that # ( r  2 I t / =  1} - #{rytry = - 1 }  - # { s j  Isj = 1} + # { s j  }sj = - 1 }  = O. Let 
~-(r,s) be a set of  tangles such that the string ending at the jth point at the top is 
oriented upward (resp. downward) in the neighborhood of the end point if rj = 1 
(resp. - l )  and the jth point at the bottom is oriented upward (resp. downward) 
if sj = 1 (resp. - 1  ). We generalize the integral Z for tangles in the above sense. 
For a one-manifold X, let ag(X) denote the space spanned by chord diagrams 
on X with the 4-term relation. Every chord expressed by dashed lines in figures 
just means a pair of  points on X and nothing more. For T C 9 "-(r's), we define 
an isotopy invariant Z (T)  E ~r depending on the positions of  the end points 
of  T. 

We introduce q-tanfles, which is a generalization of tangles with non-associative 
words of  two numbers l and - 1 .  A word w with brackets is called a non-associative 

�9 word of 1 and - 1  i f w  is equal to 1, - 1  or (wtw2), where wl and w2 are non- 
associative words of  1 and - 1 .  A support of w is the sequence of l and - 1  obtained 
from w by removing all brackets. For example, there are two non-associative words 
((11)1) and ( l ( l l ) )  with support (1, 1, 1). Let u and v be non-associative words 
with support r and s respectively. The triple (T,u, v) is called a q-tangle. As for 
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Fig. 2. Generator tangles 

usual tangles, we can consider a category of  q-tangles. For T E ~--r,s and T ~ C jr ' ,s ' ,  
the product o f  two q-tangles (T, u, v) and (T/, u ~, v ~) is defined by 

(T, u, v)(T', u', v') = (T T', u, v') , (0.2) 

if  s = r '  and v = u', and T T I is the tangle obtained by putting T above T'.  We 
show the following in Sect. 2. 

Proposi t ion 0.3. Every q-tangle is a product o f  tangles o f  the following types. The 
first type is a positive crossing (Rj, u,u), where u contains (rjrj+l). The second 
type is a negative crossing (Rj- l ,u ,u) ,  where u contains (rfj+l).  The next type is 
(Ej, u,v), where v contains (rjrj+l) and u is obtained from v by removing (rjrj+l) 
and its dual type (E],u,v), where u contains (rjrj+l) and v is obtained from 
u by removing (rjrj+]). The last types are (I,u, v) and (I, v, u), where u is any 
non-associative word and v is obtained from u by replacing a subword of  u o f  
the form (Ul(Uzu3)) by ((U]Uz)u3). In the above, Rj,R) ] ,Ej ,Ef  are tangles as in 
Fig. 2, and I is a trivial tangle. 

By this proposition, we can compute the integral for any q-tangle from the modi- 
fied integrals of  the q-tangles in the above proposition. Let ~pq denote the horizontal 
chord connecting the pth and qth strings of  the trivial tangle, and o ( r ) . . ,  f20) denote 
the chord diagram with chords f2 (r) . . . . .  f2 (1) from top to bottom in turns. We use e x 
for the formal power series ~ = o X ~ / k ! .  Let Pjj+I denote the diagram presenting 
the permutation at i th and j + 1 th strings as in Fig. 3. 

Theorem 0.4. We define Z f  for generator tangles as follows: 

2i(Rj,  u,u) = eV rj+, ajj+,/2 P j j+ I ,  

Zu(Rf  1, u, u) = e-J/V+lojj+,/2 Pj j+1 , 
A 
z:-(E;, ~, v) =E}, 

Z f ( E j ,  u , v )  = 7 f - I  . E j  , 

2 i (Lu ,  v) = 

2AI,  v,~) = 4' 

~ rprqQpq, ~ rprqY2pq I 
jO~p<jl--1 11 <=P<=J2 -1  

\ Jl ~q<=J2 -1  J2 ~=q<=J3--1 

/1NP=J2 1 jo<--p<=jl I 
J2 <~q<~J3 -1  Jl <=q~-J2 -1  

, ( 0 . 5 )  
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where 7f = Z f ( U )  is given by (5 .7)for  a diagram U in Fig. 5, and the action 
o f  ~ f is induced by the connected sum at the distinguished strings. For the last 
two formulas, ~9 is given in (3.7) and (3.21), v is obtained from u by replacing a 
subword for  u o f  the form (ul(u2u3)) by ((ulue),u3), the support o f  ul,u2 and u3 
are (rio . . . .  , Fj1 _ 1 ) ,  ( r j l  . . . .  , r j2  -- 1 ) ,  and (rj; . . . .  , rj3 - 1 ) respectively. In the right-hand 
sides o f  the above, E] and Ej represent the chord diagrams without any chords 
on Ej*. and Ej respectively. 

Then Z f  defines a representation of  q-framed-tangles. Especially, for a knot 
K, the image Z (K)  o f  Z f ( K )  by the projection ~ ~ d o  in [5] is equal to Kont- 
sevich's integral invariant. 

Remark. 0.6. For a sequence r, let wr = (((...(rlr2)...)rlrl-1)rlrl). Then, for a 
tangle T E J-(r"),Z((T, wr, ws)) and Zf((T,w~,ws))  are invariants of a tangle and 
a framed tangle respectively. They also give representations of the categories of 
tangles and framed tangles respectively. 

Knots can be expressed as a product of q-tangles in Proposition 0.3 as in the 
following example. 

X 
j j+l 

Fig. 3. Pjj+l 

~ (_+i) k rj ri+ 1 

k--O 2 k k! 

j+l 

(~j j+l) k 

Pjj+I 

Fig. 4. C4-'JlJ+IOJJ+I/2pjj+I 

Fig. 5. Diagram U 
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2 3 @  + 1 @  ))= ?q 

Fig. 6. The second degree part of ~/(trefoil) 

Example O. 7. Let K be the trefoil knot and U be the trivial knot diagram as in 
Fig. 4. Then they are (0, 0)-tangles 

(El, u0, Ul)(E2, Ul, u2)(I, 112, u3)(R1, u3, u3)3(I, u3, u2)(E~, u2, Ul)(E{', Ul, uo), 

and 
(El, /)0, /)l)(E2, Vl, v2)(/~ I)2, v3)(E~, /)3, Vl)(E~, Vl, Vo), 

where u o = v o = t h e  null-word, u l = v l = ( 1 - 1 ) ,  u 2 = ( ( l ( 1 - 1 ) ) - l ) ,  u 3 =  
( ( ( 1 1 ) -  1 ) -  1), v2 = ( ( 1 ( - 1 1 ) ) -  1) and v3 = (((1 - 1 ) 1 ) -  1). Hence 

Zj (K)  = 7f -1 �9 Ely f  -1 �9 E2~b((212, -~223)e3&2/2p120(-Q23, (212)E~E~ 

= 7f -2 �9 E l �9 E2~(~'~12, -s176 f212)E~E~ , 

where qb(f212,f223) = 1 + ~4@2)(f212f223 - O23f212)+.-- as in (3.10), 7f =E1E2 
d?(O23,0~2)E~E~=l+~4E1E2(f2~2f223-f223012)E~E~+.., by (5.7) and so 

yf-2  = 1 -- IEIE2(Q12O23 - f223Q12)E~E{" + --'. For example, the degree two part 

of ~[(K)  is EIE2 {230~"122 _{_ 6~'~231 2)P12E2E1 . ,  �9 
Let KI#K2 be the connected sum of two knots K1 and K2. Then, from the 

definition (5.8) of Zf,  we have 

Z f ( K I # K 2 )  = ~f  �9 z f ( g l )  ~ zf(g2)  . (0.8) 

For a framed link L with a component ~, let ~r be the framed link obtained 
from L whose component # is doubled. Then 

Zf (~ t (L ) )  = At(Zf(L))  E s](Df(L)) , (0.9) 

where A~(~) for a chord diagram ~ E ~r is defined as follows. To get Ae(~), 
2 where pl,  P2 we replace each chord ~'~pq with end points p and q by ~i , j=l  (2p~ qj, 

(resp. ql,q2) are points on the doubled string corresponding to p (resp. q) if p and 
q are on the component (, ~i2=1 f2p~q or ~i2=1 f2pq~ if  p or q is on E, or ~2pq if  
neither p nor q is on E. 

The modified integral for trivial q-tangles is not necessarily trivial as in (0.5). 
However, this integral satisfies the properties of the associator in the theory of quasi- 
Hopf algebras in [8, 9]. Moreover, the above A corresponds to the coproduct. With 
our q5 in (0.5) and A, we can impose a structure like a quasitriangular quasi-Hopf 
algebra on the modules of chord diagrams, as explained in Sect. 6. 

In Sect. 1, we define Kontsevich's integral for tangles. In Sects. 2 and 3, we 
introduce pre-q-tangles and modified integrals for them. In Sect. 4, we show that 
the category of q-tangles is a quotient of the category of pre-q-tangles and the 
modified integral is factored by this quotient. We prove Theorem 0.4 from this fact. 
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In Sect. 5, Kontsevich's integral is generalized for framed tangles. In Sect. 6, we 
introduce the quasi-Hopf algebra structure to our modified integrals. 

After finishing our preparation of this paper, we got papers [6] and [3], which 
treat a similar subject from other points of view. 

1. Kontsevieh's Integral for Tangles 

Let X be a compact l-dimensional oriented piece-wise smooth manifold with or 
without boundary. The components of X are circles or segment lines. A chord dia- 
gram with support X is a set of dashed chords with end points lying in the interior 
of X, regarded up to a diffeomorphism which preserves each component and the 
orientation of X. Connected components of X are called strings, Wilson lines or 
Wilson loops. Let ag(X) be the space spanned by chord diagrams with support in X 
subject to the 4-term relations. Let d 0 ( X )  be the space spanned by chord diagrams 
with support in X subject to the 4-term relation and framing independence relation. 
The framing independence relation means that every chord diagram containing a part 
like Fig. 1 (b) is equal to zero. If f : X --+ X '  is a homeomorphism then there is an 
associate isomorphism between ag(X) and ag(X'). If X is a circle then we denote 
ag(X) by ag. Let ~1 and ~ 2  be two chord diagrams in ag, each with a noted string. 
Remove an arc on each noted string which does not contain any vertex and then 
using two lines to combine the two strings into one single string. We get a chord di- 
agram called the product (or connected sum) of ~1 and ~ 2  along the noted strings. 
It is proved in [5] that this operation does not depend on the location of the arcs re- 
moved, ag has an algebra structure with this product. We denote by ago the factored 
algebra of ag by the framing independence relation. Using a connected sum and an 
evident isomorphism we can define an action of ag on ag(X) if the string to be acted 
on is indicated. The action is the connected sum with the indicated string. As in 
[5], it is easily proved that this action is well-defined. Similarly ago acts on ag0(X). 

Let j-(r,s) be a set of tangles as in the Introduction. Let [r[ and Is] denote the 
numbers of elements in r and s respectively. For T C y--(r,,), let ag(T) denote the 
chord diagram algebra on T, i.e. the space spanned by chord diagrams with support 
in the 1-dimensional manifold corresponding to T subject to the 4-term relation 
Fig. 1 (a), and let ag0(T) denote the quotient of ag(T) by the framing independence 
relation Fig. 1 (b). 

We generalize Kontsevich's iterated integral for knots to tangles. For a tangle 
T, we define an integral Z(T) E ago(T) as follows. 

Definition 1.1. Let Z(T) be the element of A~k)(T) defined by 

oo 1 ( ) # P I  dzj(tj)-dz}(tj) 
Z(T) = ~ (2~i)~ p/~ \ ( - 1  f /~ ~ Tp. 

n=0 ~ tl<t2~...<tnj=l z/(tj)--zS(tj) J 

In this equation, P runs over all horizontal chord diagrams on T, where a horizontal 
chord diagram on T means a chord diagram on T with chords parallel to {0} • C 
and two horizontal chord diagrams ~1 and ~2 are regarded to be equivalent if ~2 
can be obtained by moving the chords of ~1 along with T by keeping their order 
with respect to the level. The parameters t l , . . . ,  tn represent levels of the chords of P 
and the integral is taken over all possible ranges t l , . . .  ,tn to represent all horizontal 
chord diagrams equivalent to P. The complex numbers zj(tj) and zj(tj) represent 
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T T 

Fig. 7. T and T are identical except within a ball, in which they are as above 
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the horizontal coordinates of the end points of the jth chord. Note that the form 
does not depend on the choice of zj and z~. #PT is the number of points zj and 
z~ at which L is oriented upwards, Tp is the image of the chord diagram in aft(T) 
naturally associated with T and P. 

Proposition 1.2. ([5, 16]) a) Z( T) remains unchanged under isotopy which preserves 
every point of  the bottom and the top planes and does not change the number of 
the maximal and minimal points of each string. 

b) I f  T' differ from T only in a neighborhood of a ball in which T and T t 
look as Fig. 7, then 

Z ( T ' )  = ~ �9 Z ( T ) ,  (1.3) 

where y is the Kontsevich integral of the tangle U in Fig. 5, 7 belongs to d o  and 
the right side of this equality should be understood as the action of y on the string 
containing the part in Fig. 7. 

Let T be a tangle with k numbered components. For j = 1, . . . ,  k let mj be the 
number of the maximal points of the jth string. Let 

Z ( T )  = ( ~  - m l  @ " ' "  @~--mk) " Z ( T ) ,  (1.4) 

here in the right-hand side, 7--mJ acts on the jth string. 

Theorem 1.5 Z(T) is an isotopy invariant of oriented tangles. 

Proof Using Proposition 1.2, one easily checks that ~Z(T) is invariant under all the 
moves listed in Theorem 3.2 of [24]. Hence Z(T)  is an ambient isotopy invariant. 
[] 

2. Modified Integral for a Tangle 

Let T E y(r,s) and let 81,82,... be positive real numbers. Let Sn denote the permu- 
tation group of n letters and let a (resp. z) be an element of Sirl_ 1 (resp. Slsl_l). 
Let T~,~,~ be a tangle isotopic to T such that the distance of the jth point and the 
(j  + 1 )th point at the top is equal to e~- l (1) and the distance of the i th point and the 

(j § 1)th point at the bottom is equal to ~-l(j)  as in Fig. 8. We use notation lira 
e--~0 

for lim lim lim .... The limit of the integral lime~0Z(T~,~,~) is not convergent. 
e 1 --+082--+0 e 3 7 0  
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E~a-l(1 ) EO.-1(2) �9 . . ~,O-1(]i]_1) 

N 
t a n g l e  T 

-1 - I  - !  

s  (1 ) s  (2) " ' "  ~:z (Isl-l)  

Fig. 8. T~,~,~ 

However, with some modification, we can get a part of this limit. For a positive 
real number e, let ~c be a formal power series exp(X log e). Let 

Id-a 
e~,r = 11 ~k ~(~'r'k) and ~2(a,r,k)=- ~ ~ rprqYJpq (2.1) 

k = l  ' E1 < p < a ( k ) a ( k ) + l < = q < { 2  2~i ' 

where •1 and ~ 2  s a t i s f y  the following: a - l ( p ) >  k for all t l  < p < k and 
a - l ( f a -  1) < k i f / 1  > 1 , a - l (q )  > k f o r a l l k + l  < q < ~ 2 a n d a - l ( ( 2 + l )  < 
k if #2 < [r[. All the terms ek a(a'r'k) in (2.1) are mutually commutative and so ~,~ 
is well-defined. We consider a limit of Z(T~,~,~) modified by eG,~ and e~,s. 

Theorem 2.2. lira e~I Z(To ~ ~)~ s is finite. 
~---+0 ' ' ' ' 

Proof of this theorem is given later. 

Definition 2.3. For T E 3 -(r's) and a E 5P1~1_1, ~ E 5Pisl_l, we call the triple 
(T,a,z) a pre-q-tangle. A category C of  pre-q-tangles is a category with objects 
(r,a) with a E Sid_l and morphisms (T,a,z) fi'om (r, cr) to (s,z). A product of  
two morphisms (Tl,al,a2) and (Tz, a2, a3) with T1 E j-(~,r2) and T2 E f(~2,~3) is 
(T1T2, al, (~3), where T1T2 E 3 --(~1'~3) is the product defined by joining two tangles 
as usual 

Like (1.4), let 

Z(T,a,~) -- (y--m, | ... | 7--,~.). ( l i m e o - l Z ( T ~  ~)e~s] �9 (2.4) 
\~ - -~0  ' ' ' ' / 

From the definition of 2 of pre-q-tangles, we get the following immediately from 
Theorem 1.5. 

Theorem 2.5. For a pre-q-tangle (T,a,~), Z(T,a,~) is an isotopy &variant of  
(T,a,z), i.e. Z(T,a,z) only depend on a,~ and the isotopy type of T. Moreover, Z 
gives a representation of  the category of  isotopy types of pre-q-tangles, in other 
words, Z is compatible with the product of pre-q-tangles. 

We call Z(T, a, ~) a modified integral invariant of  the pre-q-tangle (T,a,'c). 
To prove Theorem 2.2, we first show an analogy of Proposition 0.3, which 

says that every pre-q-tangle (T, a, z) is a product of some simple pre-q-tangles. We 
give the integral of each simple pre-q-tangle exactly. We can compute the modified 
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integral invariant Z(T) from Z of these simple pre-q-tangles as in Theorem 0.4. We 
show that the cateAgory of q-tangles is a quotient category of pre-q-tangles in Sect. 
4. We generalize Z to a invariant of framed tangles Zf  in Sect. 5. From those, we 
get our main result Theorem 0.4. 

Proposition 2.6. Every pre-q-tangle is a product o f  tangles o f  the following 
types. The first type is a positive crossing (Rk, a, a) with a ( n - 1 ) = k .  The 
second type is a negative crossing (Rk- l ,a ,a )  with a ( n - 1 ) = k .  The next 
type is (Ek, a,z), where z ( n -  1 ) =  k , a ( i ) =  z(i) if "c(i) < k and a ( i ) =  z ( i ) - 2  
if  z(i) > k + 1, and its dual type (E~,a,z) ,z(n - 1) = k,z(i) = a(i) i f  a(i) < k 
and z ( i ) = a ( i ) - 2  if  a(i) > k +  l. The last type is (I ,a,z)  with a = ( i i +  
1)z. In the above, Rk,R~I,Ek,E~ are tangles as in Fig. 2, and I is a trivial 
tangle. 

In the following, we prove Proposition 2.6 and Theorem 2.2. Kontsevich's in- 
tegral for a tangle T depends on the isotopy type and the positions of the end 
points of it. Therefore, the limit of the integral depends on the isotopy type of 
T and the elements a,'c. We can decompose T into a product of several simple 
tangles Rk,R~I,Ek and E~ given in Fig. 2, which we call generator tangles. It 
is enough to show Theorem 2.2 for these generator tangles for all the possible o- 
and z. 

Let T = Rk C ~--(r,,) and c~ be a permutation such that c~-l(k) = Irl - 1. Then 
we have 

T,,,~,~ = I~,~,~T~,~,~I~,r . (2.7) 

Lemma 2.8 In the above situation, lima_+o~Z(T~,a,e)g~ -1 =Pkk+lerkrk+lrakk+t/2, 
where Pk k+l denote the permutation diagram corresponding to (k k + 1 ) and f2k k+l 
denote the chord connecting the two strings. 

Proof  We first compute 

lim elrl_l-rkrk+lOkar+l/(2~i)7t7" ~~ SkSk+tf2kk+l/(2rti) (2.9) 

e[rl-I 

The strings of T are parallel except the two strings forming the crossing. Hence, 
the integral for a configuration with a chord connecting these parallel strings is 
equal to 0. The limit of the integral for a configuration with a chord connecting 
one of the parallel strings to one of the strings forming the crossing is equal to 
zero, because this integral has order O(gH_l(lOgey ) for some •. The remaining 
case is a integral for configurations with chords connecting the two strings forming 
the crossing�9 We can assume that the levels of the bottom and top of T are t = 0 
and t = 1 respectively�9 Let us parametrize the two strings forming the crossing 
by c + qrt_l eit and e -  gLr]_l eit, where c is a real constant. The iterated integral 
for the configuration with # chords connecting the two strings is 1/(2e(!). Hence 
we get 

�9 - - r k r k + l ~ k k + l / ( 2 r g i ) Z ( T  ' ~ SkSk+l f2kk+l / (2 r t i )  llm~0 elrl-1 ~ ~ .... J Irk-1 = Pkk+lerk rk+l~2k'{-+l/2 
~1r1-1 

(2.1o) 
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Due to the 4-term relation, eE o(~'~'e) commute with Okk+l and eeO(~'r'e)Pkk+~ = 

e~(~'*'~)Pkk+l if  ~ < I r l -  1. Therefore, 

lim e~ ~-I Z(T~ ~ ~)g~ 
~--+0 ' ' ' ' 

/ I r l -2 \ /1"1-2 "% 
= lim...~l_~o q,,-2 -~~ t~<-"<~'"~'Je~,e<'k"'/2tHU'<=''~' ) 
= lim .. .  l i m  Pkk+l  eOk:'-+ll2 = Pkk+l  ef21~a'+ll2 . [] 

81---+0 girl _2---+0 

Similarly, for T = R~-I, we have 

Lemma 2.11. With  the nota t ions  in L e m m a  2.8, we have lim~__+oe~-lZ(T=,=,,)e~ = 
Pkk+le-O~k+~/2 . 

Let T -- E e 6 ~--(~,s) and c~ be a permutation such that ~(Ir  I - 1) = k and ~(Ir[ - 

2 )  = k 4- 1 i f  k < Irl - 2 or  k - 1 i f  k > Irl - 1 a n d  Irl _-> 3 .  L e t  be a per- 
mutation of  degree Irl - 3 such that f l - a ( ( )  = c~-l(#) if  Y < < k and f l -~(( )  = 
~ - l ( y  + 2) if  Y > k. Then we have 

T,,z,~ = Sa,~,eT~,e, eSe, r ,, . (2.12) 

Lemma 2.13. In the above si tuation,  lim~__.og~,r-lZ(T~,~,~)e~,, = E~ E ag(T) .  

rkrk+l Qk k+l/(2rU) TrT, ,, P r o o f  We first compute limqrl_l--+0elrl_ 1 z, t ~,/~,~j. In this case, 
rkrk+l = --1 for any given orientations of  the strings. We split T to aproduct  of  T1 
and T2, where T1 is the tangle isotopic to T and has distances e/7_l(t ) between the fth 

and (~ + 1) th points at the bottom if  g=t=k - 1 and e/7-1(i ) + elrr_2 + elrl_ 1 between 

the (k - 1 )th and k th points. The strings of  T1 are parallel except the string with both 
end points at the top. Hence, the integral for a configuration with a chord connecting 
these parallel strings is equal to 0. The limit of  the integral for a configuration with 
a chord connecting one of  the parallel strings to the string connecting two points 
at the top is equal to zero, because this integral has order O(qr l - I  ). The remaining 
case is a integral for configurations with chords connecting the string connecting 
two points at the top. However, this configuration is mapped to 0 due to the framing 
independence relation. Hence the only non-trivial integral is the integral for the con- 
figuration without any chords, and we get limq,.l_l__+oZ(T1 ) = E~. More precisely, 

, . ak k+~I~2~OZ(T1) = ET, Z (  T1 ) = E;< + O(elrl_l ). From this fact, we get llm~M_.--+oelrl_ 1 

& ~+l/(2~i) for configurations with p since E~Okk+l = 0 and the coefficient of  Pill_ 1 

cords have order O((logq~[_l)P).  We also have 

- f 2 ( ~ , r ,  I r 1 - 2 ) S  Ok k+l/(2zi)Z(T1 T2 ) 
lim lim girl_ 2 irl_ 1 

~H_2 ~~ %q_l +~ 

= l im g[rl_2-o(c~'r'lrl-2)(E~ 4- O(elr l -2) )  
~0 

e l d - - 2  

�9 --a(cqr, [r I - - 2 )  , 
= lim girl_ 2 E~ = E~ . 

~ 0  
~1,1-2 
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The last equality comes from the relation OktE~ = f2k+leE*, since both configura- 
tions are the same cord diagrams. Now we have 

lim ... lim q~ "" ~lrJ-3~ f2(fi's'l) = Ek* ' 
el --~0 ~lrl_3 ~ ~  

f2(~,r, l r l -3)E% O(B,s, Irl--3) , 
s ince  ~lrh-3 k Ir[--3 = Ek" [] 

Let T C j-(r, st be one of the generator tangles with a maximal point. Assume 
that the k th and (k + 1)th points at the bottom of T are connected by the string 
having the maximal point. Let c~ be a permutation such that c~(Is [ - 1) = k and 
~ ( I s l - 2 ) = k - t - 1  i f k  < I s [ - 2  or k - 1  if k---_ I r l - 1  and Irl >_- 3. Let fl be a 
permutation of degree Is I - 3  such that f i - l (~ )= ,c~-1(~) i f  # < < k and f i - l ( ~ ) =  
e-l(t~ + 2) if ~ >__ k. Then we have 

T~,~,~ = I~,~,~ r~,~,~I~,~,~ . (2.14) 

As in the previous case, we get the following lemma. 

Lemma 2.15. In the above situation, l im~0 eB,~-~Z(T~,~,~)e~,~ = Ei E ~r  

Now we discuss about the convergence of the modified integral for the trivial 
tangle I~,~,~. Note that the integral Z(I~,~,~) may not be trivial. Since the symmetric 
group is generated by transpositions (k k + 1), we have 

Lemma 2.16. I~, ~,~ is a product o f  tangles o f  the form I~(k k+l),~,~, where ~l E Sir I- 1 
and 1 <-- k < Irl  - 1. 

Proof  o f  Theorem 0.3. First, note that usual tangle is expressed as a product of 
several tangles of forms as in Fig. 2. Hence (2.12), (2.14) and Lemma 2.16 imply 
Proposition 0.3. [] 

Lemma 2.17. For a trivial tangle I E ~-(~'~), ~ E Slrl_~ and 1 <_ k <_ Irl - 1, 

limE~0Cn(k k+l)-1Z(in (k k+l),t/,r cq is finite. 

A proof for Lemma 2.17 is given in the next section. 

Proof  o f  Theorem 2.2. We showed that the modified integral of a tangle is a product 
of the modified integrals of the simple tangles of several types. We also proved the 
finiteness of the modified integral for these tangles. Hence we get the finiteness of 
the modified integral of any tangle. [] 

3. Modified Integral of Trivial Tangles 

The aim of this section is to prove Lemma 2.17, and give the actual form of 
l im~0  e,(kk+l),r -1 Z(In(kk+l),q,E)en, r. We prepare several lemmas. 

Lemma 3.1. Let  r = (1, 1, 1) and I (a ,b ;e ,a  + b - e )  E y(r,~) be a trivial tangle 
such that the distances o f  points at the top are a and b, and those at the bottom 
are e and a + b -  c as in Fig. 9. Then limc~0 Z ( I ( e ) ) e  ~ is finite, where 012 
denote the cord connecting the first (left-most) and the second (middle) strings. 

Proo f  We place I ( a , b ; c , a + b - e )  so that the level of the bottom is equal to 
c and that of the top is equal to a. Let t E R be the parameter for the vertical 
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a 

e a + b  -E 

Fig. 9. Tangle I(r 

1 

Fig. 10. Configuration f2 = O(~)... f2(2)f2 O) 

coordinate and y E C be the parameter for the horizontal coordinate. The first string 
is presented by y = 0, the second string is presented by y -= t and the third string is 
presented by y = a + b. Let O(1 denote the chord connecting the i th and jth strings. 
The distance of the first and the third strings are constant and so the integral is 
equal to 0. 

We show the finiteness of the integral for any configurations with O12 and 023. 
Let O be a configuration of O12 and 023 as in Fig. 10. We denote this configuration 
by O = O(r)... ~(2 )O(1 ) ,  where Q(1) = 023 and O (i) = 012 o r  023 for i > 2. Let 
f i ( x )  = 1Ix if O (i) = O12 and 1/(x - a - b) if  0(0 = 023. Let C[[t]][log t] be the 
set of polynomials in log t whose coefficients are series in t. 

We compute the integral for the configuration Of212 p. Let f[~k~jf,(s,)ds, = 
JabfSk s3s2 "'" fa fa fk(Sk)fk--1(Sk--1)''" fl(Sl)dSlf2(s2)ds2 dXk-2dXk-ldSk and t'(~) "" d [a,b] 

f ,  (s, )ds, = oal" b oa['*~ " " f~3 fs2 f k (Sk ) f lc - 1 (Sk -- I ) ' ' "  g (S1 f l (S1)ds 1 f2  (s2)ds2... dsk - 2 
dsk-ldsk.  Then the coefficient of Of212 k in Z(I(e) )  is 

1 (~) (k) ds, 
(2~i)k+r f f - - f * ( t * ) d t * 0 0 1 2  k .  

k=0 [e,a] [e, tl] S ,  
(3.2) 

On the other hand, 

1 (log E)ko12k  (3.3) CO12/(2~i) = ~ (2 • i ) kk !  
k=0 

Hence the coefficient o f  ~O12 p in Z(I(e) )e  012/(2~i) is given by 

1 (r) (k) d s ,  1 
(2~zi)p+r ~ f f - - ~ - ,  f* ( t*)d t*~. ( l~  e ) t00~2  p 

k+E=p[e, a] [e, t 1 ] 
(3.4) 
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1 
We have f (k)  ds .  _ 1 (log q - log e) k, and ~k+~=p k!~! (log e)~(log tl - log e)k 

aid, t1] s .  k! 
1 1 

= ~i+j+(=p i!j!f---~. ( l~176  h)i(-ly(l~ ey = ~+q=p i!q! (log e - log e) q 
1 

(log h )  i = ~1.(log tl ) p. Therefore, 

(3 .4 ) - -  1 (~) 1 ~ .  f , ( t , ) ( l o g  fi )P d t ,  f2~12 p (3.5) ( 2?ci ) p+r [e f], 

The limit e ---+ 0 of  the above integral is finite because f l ( x )  = 1/(x - a - b) and 
a + b > 0 .  [] 

We get a similar lemma for the vertically and horizontally flipped tangles of  
I (e) ,  and combining these results, we get the following. 

Lemma 3.6. For the tangle I ( a  - e, e; e, a - e),  l i m ~ o  e -(223/(2?:i) Z ( I ( a  - e, e; e, 
a - e))  e (212/(2ni) is finite. 

We can compute the integral for every configuration. Let J = (P l ,  q~, . . . ,  Pg, qo) 
for positive integers p l ,  ql .. ., Po, qa, P ( J )  = ~ = 1  Pk, q ( J )  = ~ = l  qk, ]JI = P ( J )  

+ q(J ) ,  g ( J )  = 9, ~?J = ~'~12 q~j ~~23 p~! - . .  ~12  ql ~23 pl , and 

~j = ( (1  . . . .  ,1, ql + 1, 1, . . . ,  1, q2 -}- 1 . . . . .  1 . . . . .  1,qo + 1) ,  

p I - I  p 2 - 1  py--1 

where 
1 

ml <m 2 < .,. <mk ~N m l  sl /,/,/2 s2 . . .  m k  sk �9 

~(sl . . . . .  sk) is called Zagier 's multiple zeta values. Let cZk, E be the numbers 
given by 

( - -  1 )P(J) 

cj, o , o -  (2rci)lJI ~J '  (3.7a) 

CJ, o, E = ( - -  1 ) E ~ m j ,  j t  C J',O,O , (3.7b) 
J! 

where J '  = (p] ,  q'l . . . . .  p'g,, q~g,) and Oj, runs over all substitution of  ~ copies of  
~12 to Qj except to the right of  it, and mj, j ,  is the number of  ways to get J~ from 
J as above, 

CJ, k,~ = ( - - l  ) k ~ m j ,  j ,  cj, ,O,g, , (3.7c) 
j t  

where f2j, ~21f' runs over all substitution of  k copies of  ~223 to f2j ~ 1 2  y except 
to the left of  it, and mj, j ,  is the number of  ways to get j t  from J as above. For 
example, c(1,1),0,1 = -2c(a,2),0,0 = -~(3) ,  and co,1),1,1 = -2c(2,1),0,1 --2c(1,1,1,1),0,0 
+ 4c(2,2),0,0 = 2~(2, 2) + 4~(1, 3). 

Proposit ion 3.8. For I(1 - e ,e ;e ,  1 - e ) ,  

~23 Q12 eO [m/2] 
lim e - 2 = ~ - Z ( I ( 1 - c , e ; e ,  1 -  e))c~r~ = ~ ~ ~ CJ, k, l g 2 2 3 k f 2 j ~ S ,  
c---+O m=0 g--0 k,{&0 

y(J)=,q 
k + { + lJ l=m 

where we pu t  cj,0,0 = 1 f o r  e m p t y  sequence J. 
(3.9) 
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We denote the right-hand side of  (3.9) by q~("Ol2, ~Q23)" Reformulating (3.9) by 
using (3.7), we get 

o~ [m/2] 
qb(g212, 0 2 3 ) =  ~ ~ ~ Cj, o,o ~ ( - 1 ) l J ' l •  

m=0 g=0 g(J )=g  , t  , t t , ~ 2 a ( J )  
kh-#+lJ l=m d =tP l  , '",qg(J))~L>_ 0 

j t  < j  (component wise) 

J=~ p} q} 023 k ~2j_j, f2~2 t . ( 3 . 1 0 )  

Proof of  Theorem 3.8. Let f2j = ~2(IJI) . , .  ~ '2(2)/2(1),  where Q(k) = Y212 or 023, and 
let f i ( x )  = 1Ix if  g2 (i) = ~c~12 and 1/(x - 1) if  f2 (i) = s First we prove for the 
case k = Y = 0. The coefficient for the configuration f2j in the integral lim~_~o 
6 -f223/(2~i) Z(I(1 - 6, e; 6, 1 - 6 ) ) e  ~1z/(2~i) is equal to that in lime-~o Z(I(1 - 6, e; e, 
1 - e ) ) ,  and it is equal to the iterated integral 

([J]) 
f f ,  ( s , )ds ,  . (3.11) 

[o. 11 

Note that f l ( x ) =  1 / ( x -  1) and 

tmk dt x m~ 
E "1 sk -- 2 sk+l ' 

0 ml < ' " < m k C N  ml . . . m  k t ml < . . . < m k E  N m l  sl . ,  .m k 

xf t mk dt x mk+l 

o ml <'"~<mkE N ml sl .. mk sk t 1 -- ~ sk " m I < ".. <mk  <ink+ 1 c N  m l S  I �9 - -  �9 �9 �9 m k m k + l  

By using these relations inductively to compute (3.11 ), we get the right-hand side 
of  (3.7a). 

We reduce the other cases to the k = # = 0 case. Since 

6(212/(2ni) = ~ 1 f d s ,  
k=0 (2~i) k[1, ] s ,  ' 

__s = k=~0 ( 1 f ds. (3.12) 
2~t') kit o ] S * - I  ' 

the coefficient of  ~2j, k,~ of  the integral ~-~223/(2~i)z(1(1- 6, C;C, 1 -  g))C (212/(2rci) is 
given by 

k ~ (k-n) dx. (~m) dy .  (]JI) 
1 ~ f x [ 7 1  Y. f f . ( s . ) d s . x  

(2~i) k+e+lJI n=0m=0[1-e,c] [~,1-c] [e, ul] 

(n) du, (~) dr,  
f - - -  J 

[1--e,e] /A. - -  1 [1,e] V. 
(3.13) 

The iterated integral satisfies the following: 

(k) (t) (e) (k) 
f f f . ( s , ) d s . g . ( t , ) d t . =  f f g , ( t . ) d t ,  f , ( s . ) d s , .  

[a,b] [a, tl] [a,b] [Sl,b ] 

(3.14) 
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This implies 

1 

(3.13) -- (27zi)k+~+lj I O<_n<-k[e,l-e][e, ul] •0=m=d' [L,S1] Y [1,r V, / 

f .  ( s . ) d s .  du .  (k~n) dx.  

u .  - 1 [ 1 -  ,o] x ,  - 1 

( _ l ) k + f  (iJI) (k) du.  (~) dr .  
(2~zi)k+e+lji f f - - -  3 - -  f .  ( s . ) d s . .  

[e,l-e][0,sl] u. - 1 lSl,1] v. 

Hence the limit of  (3.13) is 

(_ l )k+~ ([J]) (k) du.  (~C) dr .  _ 
(2~zi)k+e+lj E f f j -~-. J .  ( s . ) d s . .  

[0,uN[0,sd u, - 1 [st,l] 

First split the integral intervals o f  ul . . . .  , uk by Sl . . . . .  sij l, and then split the 
integral intervals o f  vl . . . . .  v~ by sl . . . .  , slj l, ul, . . . ,  uk. Then the above integral is 
a sum of  iterated integrals and each integral is expressed by c j,0,0 for some J .  Con- 
sidering which J corresponds to a part  of  the integral, we get the proposition. [] 

Now we introduce an operator A which duplicates a string of  a tangle. Let 
T E y(r ,s)  be a tangle without maximal  nor minimal points. Let w be a string of  
T connecting the k th point at the top and the jth point at the bottom. Let T ~ be the 
tangle obtained by adding an extra string w ~ to T which is close and parallel to 
w. The orientation of  w ~ is equal to that of  w. We denote this operator by Ak. 
Then Ak (T~,z,e) = ~ ' ,~ ' ,E ,  where a ' ( [ )  = a(k)  i f  or(l) =< k, a '  (Is]) = k, G'(~) = 
a ( [ ) +  1 if  otherwise, and z ' ( ( )  = z(#) if  a ( [ )  < j ,  z ' ( [ r [ )  = j ,  z ' ( ( )  = z ( [ ) +  1 
if otherwise. We can compute the modified integral o f  At (Ta,~,c) from the modified 
integral of  Ta,~,c as follows. 

Proposi t ion 3.1$. We have 

lim - 1 t o, , ,~,=a,~,~+o,~, e~o e~"r' Ak(T~"J'e)er"s '  = e--.olim e ~ , ~ - l Z ( T a ~ ) e , s ,  , , (3.16) 

for  every string v o f  T other than w. 

Proo f  Let ee = Ak (T$,,,,,e) and ao = Z (T~ .... )[ow,=e,,,~,+e,,,,. Then we have 1~(% I) 

- c ~ ( 0 ) [  < O(elrl). Since the coefficient of  el~l~ ,'/(2~i) for the configuration with t' 

cords has order (log el~ [)e, we have 

~2wwt/(2rci) --f2w~//(2~i) (3.17) lim elf l~2wwt/(27zi) ~e elf I-Q'~J/(2~0 __ limbo elrl c~~ = C~o. 
el;'l-*O %'1 

For the last equality, we use the 4-term relation [ ~ 2 ~ , ,  t?w~ + t 2 ~ , ~ ]  = 0. The for- 
mula (3.16) comes from (3.17). [] 

L e m m a  3.18. For I(a - e ,e ;e ,a  - e), 

l i m  a - -  
a---+0 

f212+(213 
2~zi 

f223 f212 ~ s +f223 
lim e 2~z-Y Z( I (a  - e, e; e, a - e))  e 29zi ) a 27zi 

\e-~o 
Q2 3 

= lira ~ -  2~ Z(I(1  - c, e; e, 1 -  e ) ) e ~  
c--+O 

(3.19) 
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1 e 

T 1 ! a - E J  

I(a,a)T2 1 

e 1 

Fig; 11. Product of tangles I(~,a), 7', and T 

P r o o f  Consider a product T l I ( a -  e , c ; c , a -  c)T2 of  three tangles in Fig. 11. Let 
~r denote the subspace of  ~r spanned by cord diagrams with k cords 

and Pk : s#0(X) ---+ sr be the natural projection. Form (3.12) and proof  of  
Proposition 3.15, we have 

Hence 

Pk (a-(Fal2+al3)/(2rti)) = Pk (e-a23/(2rci) Z (T1) 6 "~23/(2ai)) -~- O(e(log e) k) , 

Pk (a (~13 +(223 )/(2,ci) ) = Pk (c-~ 2/(2~i) Z ( T1 )g aI2/(2rci) ) -}- O(e(Iog e)k ) .  

Pk a 2,~ lira c - 2 7 Z ( I ( a - c , c ; e , a - e ) ) e 2 ~  a 2~i 
~ c--+0 

~2+a13 a12 ~13--~23 ) = lim Pk a 2~ e-]frac~ e , a - e ) ) e ~ r a  2~i 
r 

( (-  -) = l i m  Pk e 2~ Z ( T 1 ) Z ( I ( a - e , e ; e , a - e ) ) Z ( T 2 ) e T ~ - ;  O(e(Ioge)  ) 
c--+0 

1223 (212 
= lim p k ( e - ~  Z(I(1 - e, e; e, 1 - e ) ) e ~ r ) ,  

~-~0 

since the tangle T11(a - e, e; e, a - e) T2 is isotopic to I(1 - e, e; e, 1 - e) with 
the same endpoints. The last form does not depend on a and so we get (3.19). ~Z 

Let 
oo [m/21 

m=09=0 k,~>0 
g(J)-g 

k+~'+lJj=,~ 

Then, by (3.9), 

Cj, k,E ~,-~23 k ~r~j ~c~i2fl . 

q)(~'~12, ~23) = lim ~-~ z (1 (1  - c ,  c; c, 1 - c ) ) c  012/(2~i) (3.21) 
E--+0 

Theorem 3.22. Let  I be the trivial tangle in j ( r , r )  f o r  some r and let ~ be 
a permutation o f  lrl - 1 letters. Then the limit 

lira ~(k k+l),r -1 Z(l~(k k+l),q,e)E~l,r = I E ~4(I) (3.23a) 
e~0 

i f  there is j < k between q(k)  and tl(k § 1), 



Representation of Tangles by Kontsevich's Iterated Integral 551 

1 lira e~( k k+l),r- Z(I~(k k+l),~,~) e~,r 
e--+0 

(9 ~ rprq~2pq, ~ rprqOpq , i f  tl(k ) < tl(k -~- l ) ,  
q(k)+ 1 < p < q(k+l ) #t < P < q(k) ) 

= t / ( k + l ) + l  =<q ~ #  ~l(k)+l<=q<=q(k+l) 

4 (  ~ rprqQpq, ~ rprq~2pq), if  t/(k) > t/(k + 1), 
\ q(k+ 1)+1 < p < ~(k) ~' < p <= q(k+ l) 

n(k)+l <q__</ ~(k+ 1)+1 __<q_<_ ~7(k) 
(3.23b) 

where # is the maximal number such that q- l (q)  >= f~ + 1 for all q such that 
max(tl(k), tl(k + 1 ) ) +  1 < q < ~, and ~ is the minimal number such that t1-1 (p) 
>= k for all ('  < p < min(q(k), ~(k + 1)). 

Proof We prove the above for r = (1, 1 , . . . ,  1). Results for other cases come 
from this case by changing the signatures corresponding to the factor (-1)PT in 
Definition 1.1. Assume that ck is very small for k > i § 1. Then the strings of  
In(k k+l),n,e are split into k + 2 groups, in which strings are parallel and very close. 
Let G1, G2 . . . . .  Gk+ 2 be those groups from left to right. Let r ~ be a sequence of  
k + 1 ones and I '  be the trivial tangle in j-(,-',r'). Then, there is t/~ E Sk+~ such that 

.' '(kk+l),~',~ is the modified tangle obtained by replacing each group G~ by a single 

string. Let f2(Y) = ~cGj ,  t~c~ (2st where ~2st denote the cord connecting the strings 

s and t. Proposition 3.18 implies that we can get lime~0 c~( k k+1),~ -1 Z(I~(k k+l),,,e) 
--1 C~,r from lime_~0e,(k k+l),~' Z(~,(k k+~),n,~)en,~, by changing each string to 

strings in the corresponding group and each cord (2j~ connecting the jth and ~th 

strings of  I ~ to a sum of  cords Q(Je). 

From now on, we investigate lim~-~0 ~'(k ' -~ Z ~I~ k+~),~ t ~'(k k+l),~',~)C~',~" Let j 
be an integer with 0 < j < t/(k) or t/(k + 2) < j < k + 2. Then the coefficient of  
a configuration containing f2j~(x)~ (2jn(k)+~,..., or(2/~(~+~)+~ is 0 in the limit of  the 

-~ Z( / ' ,~  is 0 modified integral since such a coefficient in ~'(k~+~),~' ,,~ ~+l),~',~)~'~',r ' 

or bounded by O(ek (log ek)e) for some (.  
Now consider the case t/(k) + 1 < t/(k + 1). Let t/(k) + 1 < j < t/(k + 1) + 1. 

Then the coefficient of  a configuration containing (2j,(k) or (2j~(k)+l is 0 in the 
limit of  the modified integral as before. Let t/(k) + 1 < # < t/(k + 1) + 1. Then 
the coefficient of  a configuration containing (2j~(k) or (2j,(~)+a is also 0 in the limit 
of  the modified integral as before. Hence, the limit has a nontrivial coefficient for 
configurations consisting of  ~2~(k)~(~)+~ and O~(k+~)~(~+~)+~- We can compute the 
coefficient o f  (2~(k)q(k)+lP~q(k+l)q(k+l)+l q in Z(I~,(kk+~),~,,e), and it is (2ni)P+q p!q! 
(log ~ -  log r ~+~ - - log  Ok) q. Therefore, the coefficient of  Y2,(~)n(k)+~ p 

--1 ! (2~(k+1)~(~+~)+~ q in the modified integral e~'(kx+~),r' Z(/,~,(kk+l),~,,r r, is 

1 1 
(2Tci)p+ q ~ s~!s2!s3!r~!r2!r31(-log e~)~I(-log e~+a) sl x 

r l +r2 + r  3 = p  
sl +s2+s5 =q 

(log r  log ck+~)~Z(1og ek+~ - - log  ek)~z(1og ek+~)~(1og e t )  s~ 

= { 1  i f p = q = O ,  
0 if otherwise. 
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--1 ! This implies that l im~0 e~,(kk+l),r' Z(Is = I ! E sr and so 

lim en(k k+l),~ -1 Z(I,7(~ k+l),,,~)e,,~ = I E ~r (3.24) 
e ~ 0  

If r/(k + 1) + 1 < r/(k), we get the same result. 
l f q ( k ) + l  = r / ( k + l )  or r / ( k + l ) + l  =t / (k) ,  we get 

lira e,,(k k+l),~'-I Z(Is k k+I),q',e)gqt,r t = (9(~'~qt(k+l) t f f (k+l)+l ,  ~ t l t ( k )q t ( k )+ l )  (3.25) 

from (3.16) and (3.21). Hence, by substituting f2jt = (2 (Jl), we get (3.23b). [] 
This theorem implies the lemma at the end of the last section. 

Remark. 3.26. Lemma 2.8, Lemma 2.11 and (3.23) give modified integrals for sim- 
ple tangles in Proposition 2.6. 

4. Modified Integral for q-Tangles 

In Sect. 2 and Sect. 3, we investigate the modified integral for pre-q-tangles. Here, 
we show that the category of q-tangles is a quotient of the category of pre-q- 
tangles. We also show that the results for pre-q-tangles in the last two sections can 
be translated for q-tangles. 

First, we give a mapping f from pre-q-tangles to q-tangles. Let r and s be 
sequences of • T C 3 -(~'s) and 0- E SN,~ C Sir [. We define 

f ( (T ,  c~, z)) = (T, fw(a),  fw(~)) (q-tangle), (4.1) 

where f ~ ( a )  and fw(z )  are non-associative words with supports r and s defined 
by the following. For the sequence r = (rl, I"2, . . . ,  rl~ [ ), first put a bracket to group 

rG(irl_l)r~(i,.l_l)+l. At the k th step, put a bracket to a subsequence (wlw2), where 
wl is the group containing r~(l~l_k) as the right-most element and w2 is the group 
next to wl. Repeating this procedure to ( J r [ -  1) th step, we get a non-associative 
word and we denote it by fw(o-). We similarly define fw(V). Since the families 
of morphisms of the categories of pre-q-tangles and q-tangles are identical, the 
definition of the mapping f immediately implies the following. 

Proposition 4.2. The mapping f induces a surjective functor from the category of  
pre-q-tangles to the category of q-tangles. 

In the rest of this section, we show the following. 

Proposition 4.3. The mapping f induces a representation of  q-tangles from the 
modified integral for pre-q-tangles in the last two sections. 

Proof We show that the modified integrals of pre-q-tangles (T, al, z~) and 
(T, o'2, "c2) are equal if fw(o-1) = fw(0"2) and fw(~l)  = fw('c2). Since (T, 0"2, ~2) = 
(I, 0"2, 0"I)(T, 0"1, z~)(I, zl, ~2), it is enough to show that the modified integral for 
(/, 0", z) is equal to I if fw(0")= fw(z). Then the following lemma and (3.24) 
implies the proposition. [] 

Lemma 4.4. Let 0" and ~ be two permutations of  n -1  letters. Then f~(cr) = f~(~)  
i f  and only if  there are sequences of  permutations 0" = tlo, . . . ,  ill = ~ and integers 



Representation of Tangles by Kontsevich's Iterated Integral 553 

kl, . . . ,  k~ satisfying (*)t/i+1 = qi(ki, ki + 1) and there is some ji < ki between tli(ki ) 
and tli(ki + 1). 

This lemma comes from a combinatorial argument. We omit the proof. 

Proof of  Theorem 0.4. By Remark 3.27, ZU in Theorem 0.4 for simple tangles 
in Proposition 0.3 coincide with the representations in Proposition 4.3 for those 
tangles. [] 

5. Invariant for Framed Tangles 

In this section, we construct an invariant of oriented tangles with blackboard fram- 
ing (see for example [13]). Let T be a tangle. In this section we use chord diagrams 
d ( T )  instead of ~40(T). It means that we do not impose the framing independence 
relation given in Fig. 1 (b). We construct an invariant of framed q-tangles with 
values in ~4(T). Kontsevich's integral for a tangle becomes infinity at neighbor- 
hoods of maximal and minimal points if  we don't have the framing independence 
relation. We normalize the integral at maximal and minimal points so that it is 
finite. 

Let T be a tangle with only one minimal or maxima point p. For small positive 
e E R, let T~ be the tangle obtained from T by cutting a part near p by a horizontal 
plane. Here e is the distance between two intersection points of the distinguished 
string containing p with the cutting horizontal plane. Then T = Te x (T - T~) and 
T~ is a trivial tangle. We can define Z(T~) E ~(T~). Let co d stand for a chord dia- 
gram in d ( T  - T~) which consists of d parallel dashed lines near p and connecting 
points of the distinguished string as in Fig. 12. We regard cod as the formal d th 
power of  co. 

Proposition 5.1. Let T be a tangle with just one extremal point p. I f  p is a 
minimal point, there exist 

z A T )  = 
c 0 c 

I f  p is a minimal point, there exist 

Z f (T )  = lim e~ E s d ( T )  . 
C---+O 

Proof We use a similar argument in the proof of  Lemma 3.1. We prove for the 
minimal point case. We may assume that the bottom plane of T contains the mini- 
mal point p. Let T'  be a tangle obtained from T by a horizontal move, keeping 
each point of the top and the bottom planes invariant. Due to the 4-term relation, 
Zu(T I) = Zu(T) if Zu(T) is finite. Hence it is enough to show the finiteness for 
the tangle T in Fig. 13. 

We compute the coefficient of  the integral Z(Te)c -~ for the configura- 
tion f2 (r) ...g2 (2) f20)cop. Recall that we assumed every tangle is contained in 
R x R C R x C except neighborhoods of crossing points. Hence, T~ C R x R. As in 
the proof of Lemma 3.1, this notation stands for a configuration with f2(r),... ,f2 (1) 
from top to bottom in turns and the lowermost part is coP. Let w O) and W(k 2) 
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V 
Fig. 12. Cord diagram co d 

t = t l  

t = 0  

Z = t l  

z=O 

Fig. 13. 

be the two string of  T containing the end points of  ~?(k). If W(k 1) and w(k 2) are 
parallel for some k, then the coefficient is equal to 0. So we assume that they 
are not parallel for all k, in other words, one of  w~ 1) and w2 2) is the non-vertical 
string. Let 1/[fk(t)[ denote the distance of  the end points of  ~2 (k) at level t, i.e. 
f k ( t )  = 4-1/(t - ak) for some ak C R. We choose the signature of  f ( t )  as follows. 
f k ( t )  > 0 if the distance is increasing with respect to t and the orientations of  
w b w 2  are coherent, or the distance is decreasing and the orientation of  wl,w2 are 
not coherent; f l ( t )  = + l / ( t  - a). By repeating similar computation to get (3.5), we 
know that the coeff• is 

1 (r) 
(2rc~p+r [ f ]  ~ . ( l O g t l ) P f , ( s , ) d s , ( 2 ( r ) . . . ( 2 ( 1 ) c o  p . (5.2) 

The limit of  the above integral is finite because f l ( t ) =  •  al)  with al 4=0. 
Similarly, we can prove the finiteness for the maximal point case. [] 
Due to the 4-term relation, we have 

Lemma 5.3. Let  T be a tangle and t1 < t2 < . . .  < t m  C R such that T has a 
maximal  or minimal point  at level t = t~. Le t  T'  be a tangle obtained f r o m  T 
by a horizontal move keepin9 each point o f  levels t = ti invariant. Then Z f ( T ' )  = 
Zu(T) ,  where Z f  is defined in Proposition 5.1. 

Lemma 5.4. Let  T be a tangle and tl < t2 < " ' "  < t m  C R such that T has a 
max imal  or minimal point  at level t = ti. Le t  T(e)  be a tangle equal to T except 
a neighborhood o f  a maximal  or minimal point  at level ti o f  T where T(e )  is 
9iven as in Fig. 14. This figure explains the case o f  maximal  point. Assume that 
the two strings used f o r  movin9 the extremal  point  are parallel to each other, they 
are not parallel to C and they are contained in a plane transversal to C. We also 
assume that the level o f  the moved  maximal  (resp. min imal )po in t  is less than t i+ l  

(resp. more than t i-1).  Here  we use conventions to = - e c  and tm+l = oc. Then 

zAv(c)) : zf(r). 
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t o +  a 

T 1 

t o  
T 2 

t o - s 
T 3 

i 

to + a 

to+a-e 

(1) ~ (2) T; 

(1) / N (2) T ,to 
u 3 /  \ u3  

(U----/'~-- (2) 

v ~ l U  ~ v ~  2) 

Fig. 14. Vertical move of a maximal point 

Proof We prove for the maximal point case since proof  for a minimal point 
is similar. We split T to three parts /'1, T2 and T3, and split T ~ to three parts 
T[, T~ and T~. Let u~ 1), u~ 2), u~ 1) and u~ 2) be parts of  a Wilson loop of  T and 

let v~ 1), v~ 23, v~ 1), v~ 2), v~ 1) and v~ 2~ be parts of  a Wilson loop as in Fig. 14. 
A configuration for T/ is called type I i f  it has only chords with end points on 
u} 13 and u} 2). A configuration for Ti is called type II if  it has a chord with one 

end point on u} 1~ or u} 2) and another end point on neither u} U nor ul 2). a con- 
figuration for Ti is called type III i f  it has only chords with neither end points 
on u} 1~ nor u} 2~. We also define types of  configurations for T/~ similarly. Let 

H Ill where AS denote the integral for configurations of  type Z ( T i )  = A i -}- A i -]- A i , 
j .  Similarly, Z(T[) = BIi + B~ I + B~ II. 

A l l l [ A  1 + AI I  + AI2 l l )  ( 15  + AI31 + A~ l l )  We have Z ( T ) = Z ( T 1 ) Z ( T 2 ) Z ( T 3 ) = ~ , I  ~,~2 
Ill and Z(T')  = Z(T[) Z(T~) Z(T~) = (B~ @ B II -[- B IzI) (B  II -]- B 2 ) (BI3 @ BI3 I -[- B III) 3 �9 

Note that B~ = 0. By using l imr162 e =  0 for k > 0, we have Z ( T ) =  
l i m ~ 0  Z(T)  = limz~0 A~I I1 i II II1 I II 111 " II1 I I (A2 + A  2 + A  2 ) (A3 q-A 3 + A  3 ) = llme~0A 1 A2(A 3 
+ AI3 ' + AI3 I1) and Z (T') = lime~0 Z (T') = lime-~0 (B~ + B~ r + BI111) (BI2 I q- B III) 

Blll ) = " 1 lI Ill (B I 3 B I31 lll ( BI +BS31 + 3 l l m ~ o B l ( B  2 + B  2 ) + + B  3 ). Here we use the in- 
variance of  Zf under the horizontal move and use the condition for the level of  new 
maximal point. We also have lim~+oB{B~ I = 0, and Z(T')  = lim~__+oBIB~II(BI3 + 
B~ I + B/l/). Noting that B{ = AIz,BIy = A II1 and 1 III III I B1B 2 = B  2 B 1, we get Z ( T ) =  
Z(T').  [] 

An isotopy of  R 3 = R x C is called horizontal i f  it preserves the first (R)  
component of  each point. By using previous two lemmas, we get the following. 

Lemma $.5. Let T' be a tangle obtained from T by a horizontal isotopy. Then 
e A T '  ) = e A T  ). 

By using this lemma, we can remove the condition for the new maximal or 
minimal point in the lemma for a vertical move. 

Lemma 5.6. Let T(e) be a tangle equal to T except a neighborhood of  a maximal 
or minimal point where T(e) is given as in Fig. 14. This figure explains the case 
of  maximal point. Assume that the two strings v~ 1) and v~ 2) are parallel to each 
other, they are not parallel to C and they are contained in a plane transversal to 
C. Then Z f (T(z ) )  = Zf(T) .  

Due to the above two lemmas, Zf (T )  is invariant for Reidemeister moves except 
the stretching moves. As in the case of  original Kontsevich's integral, we normalize 
Zf (T)  so that it is equal for tangles T T ~ in Fig.7. Let 
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yf = Zu(U) , (5.7) 

where U is the diagram in Fig. 5. Let T be a tangle with k numbered component 
and 

2At) = (vy  m' 0 . . .  0 Z A T ) ,  (5.8) 

where mj is the number of maximal points of the j th component of T and so ~ f  

acts on the jth component. 

Theorem 5.9.  ZU(T) is an invariant of  regular isotopy. 

Proof is similar to 2 case. 

Remark. 5.10.  Z f ( T )  is not invariant by the twisting at the minimal and the maxi- 
mal points. Let T be a tangle and let T ~ be a tangle twisted by angle ~ z  at a max- 
imal (resp. minimal) point of T. Then ZT(T') = e • Zu(T) (resp. e q:o/2 Zu(T)). 

Now we compute the values of Zf(T)  for simple q-tangles in Proposition 0.3, 
which are given in Theorem 0.4. 

Proof o f  Theorem 0.4. If the tangle T is Rk, R~ 1 o r / ,  the argument for Lemmas 

2.7, 2.10 and Theorem 3.22 is also good for Z and so we get the values of these 
cases as in Theorem 0.4. For T = E~, we show that 

lim c~,r Zf(T, ~, fi) r = E~, . (5.11 ) 
c---+0 

We may assume that the tangle E~ is of the form as in Fig. 13 and the string 
with the cusp connect the k th and k + 1 th points at the top. It is enough to show 
that limq ~otl QI~ k+l / (2~i)Zf (To I, o;, f l )  - -  * - E  k. For a configuration containing a cord 

tl other than f2kk+l, the coefficient of the integral Zf(To,c~,fi) of this configura- 
tion is bounded by O(tl(logq) ~) for some t" from the proof of Proposition 5 . 1 .  
Hence, for a configuration containing a chord other than 12kk+l, the coefficient 
of t 1 Ok k+l/(Z~i)Zf(T01 , C~, f l )  of this configuration is bounded by O(tl (log tl)~') for 
some t ~. Therefore, the limit of this coefficient is equal to 0. The remaining con- 
figurations are f2kk+a a for nonnegative integers d. The coefficient of f2kk+l d is 

1 v-~ ( - 1 ) ~ q ~ _ . ) k + g ,  (27zi)d ~--Jk+E=d ~ I tJ~ tl which is equal to 1 if d = 0 and 0 if otherwise. This 

implies (5.11 ). The proof for the tangle Ek is similar. Ek contains a maximal point, 
so we have to multiply the factor 7f. [] 

For a q-tangle (T,a,z), we have another invariant Z0(T)E sr  constructed 
from 2(T,a ,~)E d o ( T )  as follows. Let ~ be a mapping from ~r  d ( T )  
defined by 

~t(f2) = (2 - 1/2(c51 + 62) (5.12) 

for a cord f2, where 61 (resp. 62) be a cord connecting two points in a small 
neighborhood of one (resp. another) end point of f2. ~ isfactored by sC0(T) and let 
~0 be the factored mapping from ~r to ~r Let Zo(T,a,z) = ~o(Z(T,a,v)). 
Then Z0 is also an ambient isotopy invariant of q-tangles, while 2 f  is regular isotopy 

invariant of framed links. We have following relation between 2~,- and Z0. 
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Theorem 5.13. For a q-tangle (T,~r,-c), 

( ( w l + ~ j ) o / 2  (wk+~ ~kj)o/2) 

Zf(T,a,z) = e J*' |  J*~ �9 Z0(T,a, 'c) , (5.14) 

where k is the number of components of T, wj is the writhe of the knot of the 
jth component, ~pq is the linking number of the pth and qth component, 0 is the 
chord diagram on a circle with one chord, and 0 j in the Taylor series of the 
exponentials is the product of j copies of 0 in ~r 

Proof Due to Proposition 0.3, it is enough to prove for q-tangles in Proposi- 
tion 0.3. We have O(Zf(T))= ~t(Z(T))= Zo(T) since tp(Ee ~) (resp. O(e-~ 
is equal to E (resp. E*). We compare Zf(T,a,z) and ~p(Zf(T,a,z)). We first 
compare Zf(T,a,z) and O(Zf(T,a,z)), then show that 7f = 7. For T = Ek or E~, 

~(Zf(T,~,fl)) = Z(T, cqfl), since Zf (T ,~ , f l )=ek  or E~. For T = R k  or Rk 1, we 
have Zf(T, e, c~) = e :kn/2 and so O(Zf(R)) = e ~ - ( ~ / 2 - ~ 1 / 4 - 6 2 / 4 ) .  We show 

O(Zf(I, tl(k k + 1),t/)) = Zf(I, tl(k k + 1),q) (5.15) 

for a trivial tangle I. Recall that ZT(I, (12), (21)) = 4~(O12, f223). We first show 

O(~b(~'~12, ~r~23)) ~- ~b(ff~12, ~'~23) , (5.16) 

where I is the trivial tangle with three strings. Let 6~,(i = 1,2, 3) be k small cords 
connecting 2k points of  a small neighborhood of  a point of  the i th string without 
crossings. Let 6kt = �89 + 6t). Let ~t 1 be a mapping acting on ~r defined by 

~[ll(~kik~ ''" ~'~k2k~ ~-~klk~ ) ~- ~ = 1  ~k/kt/ "'" }fl(~'~krk t ) ' ' "  ff~klk~ and kU(f2krk,,.) = Okr k, 
- 012 if  kr = 1 and f2k,.g if  otherwise. Let I/t 2 be a mapping acting on sO(I) de- 
fined similarly to 7Jl, with T2(f2k,.k, ) = Ok,.k[ -- 623 if k' r = 3 and f2k, k, if  other- 
wise. Then Oo(qS(~212,f223)) = exp(Tq + ItttZ)q~(~r'212, ~Q23 ). From (3.10), we have 

oc [m/2] 
qS(f212,O23) = ~ ~ ~ cj00c~, (5.17) 

m--0 9=0 g(J)=g 
IJ I=,,, 

where 

~= ~ (--1)lJ~l~ ( P J )  (qJ)O23P(f)Oj-j'Q12 q(f) 
(0,...,0,< J,_< J j=l P} q~ 
component wise 

Here J '  = (P'I, ql,..I., pg,, q'g). We show that 7tl and ~2 send c~ to 0. 

We see the coefficient of  612f223P(J')oj_j,012 q(J') in 7Jl(~). This is 

+ ~(P i  -- P~ + 1) Pl Pi 
i=1 P~ "'" pi 1 . . . .  

(5.18) 
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Since ( p i - p ~ + l ) ( p i  Pi  1 =Pi~(Pi)p, , (5 .18) i s  equal to 0. Similarly, ~2 

sends c~ to 0. Hence, ~P0(~) = exp(~P1 + ~2)(c0 = ~ and so 00 does not change 
~(~r~12' ~"~23 )" 

We show (5.16) for a trivial tangle I with more than three strings by similar 
argument. We use the notations in Theorem 0.4. Since 

c b+l <-q<=c b+l <q<c 

we can use the previous argument to prove (5.16) with ~ rq rqf2pq, 

rp rqff2pq, ~ fp  rq((~p q- (~q), and 
J0 +1 < P<Jl k<=P<Jo Jo < P<~Jl 
Jl +] --<q<( Jo +1 <-q<Jl Jl +1 <q=</" 

~212, f223, 612 and 623 respectively. 
The above argument implies 

{ ( w l + ~ E l j ) O / 2  

Zf (T ,a , z )  = [e  j+l 
\ 

k< p<=j 0 
q(j)+ 1 <q<=j+l 

rp rq(@ + 6q) instead of 

| 1 7 4  s+k ] �9 ~o(Z(T,a,z))  . (5.19) 
) 

In the rest of proof, we show ~0(7) = ~f, where 7 = Z(U)  and ~f = z f ( g )  for 
the diagram U in Fig. 5. We know that 7f = E2q~(-f212, -Q23)E~, and so ~P(Tf) = 
Yr. On the other hand, 02 = ~p and ~P0 gives an isomorphism between sr and 
the image of ~ in sO(T) for any tangle T. Note that ~po 1 is equal to the natural 
projection from 0(~r C ~r to sC0(T). Since 7f E 0(~r where I is the 

trivial (1,1)-tangle, ~o1(7f )  = 7, and so ~0(7) = 7f. [] 

Remark. .  Another proof for (5.16) is in Appendix of [19]. 

6. Relation to a Quasi-Hopf Algebra 

Let r (k) = ( 1  . . . . .  1) and j /g (k)=d( i (k ) ) ,  where I (k) is the trivial tangle in 

k 

--(r(l'~,r(~)) whose strings are oriented downwards. Then ./g(k) is an algebra with 
the product induced by the product of tangles. We call d//(k) the chord dia- 
gram algebra of degree k. ~ ( 0 ) =  C by definition. For a sequence of alge- 
bras C = J4 "(~ j/{O),..., ~ (k ) , . . . ,  we introduce a structure similar to a Hopf 
algebra structure. The algebra d is isomorphic to jgO). We have an inclusion 
s r 1 7 4  (jg(1))| C j//(k). We also have a linear mapping .~/(k)___+ d |  defined 
by the following. Let D be a chord diagram in ~/(k). Removing all the chords 
of D with two end points at different strings, we get a disjoint union of k chord 
diagrams DI,... ,Dk. Let D~ be the chord diagram on a circle obtained from Di by 
connecting the ending point and the starting point of the string of Di. Then D~ | 
... | D~ E ~/| The projection j/(k) ._~ zC| is a linear extension of the above 
mapping for chord diagrams. We extend the "Hopf algebra structure" of ~4 to j/(0), 
~(1)  . . . . .  j/l(k) . . . .  with respect to the above inclusions and projections. 
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We put numbers 1 , . . . ,  k to the strings of  chord diagrams in Mg (k). We first 
extend the multiplication m : d | ~4 --+ ~ to a linear mapping m : ~ (2 )  _+ .Md). 
For a chord diagram D E ~(2) ,  we can make a chord diagram D ~ E j//(1) by con- 
necting the ending point o f  the first string to the starting point o f  the second string. 
Let m be a linear extension of  the above mapping. We sometimes need an ex- 
tension of  the mapping id | @ m | id | : sr '| ---+ s J  | to id | @ 
m | id | : M//(k) ---+ ~(k-1) .  In our notation, id |  | m | id | does 
not mean the usual tensor product any longer. For a chord diagram D C ~(k) ,  we 
can make a chord diagram D ~ E M/(k-l) by connecting the ending point of  the E th 
string to the starting point of  the ( •+  1) th string. Let id |  @ m |  |  
be a linear extension of  this mapping. This extended mapping and the original one 
commute with the inclusions s J  | -+ M/l (k) and d | -+ ~(k-1) .  The unit 1 is 
the chord diagram without any chords. 

Next, we generalize the coproduct A:A---+ ~4 | d to A : . ~  (1) --~ ~(2) .  Let 
D be a chord diagram in M{(l) and pl  . . . .  ,pk be the points on the non-closed 
string o f  D where the chords are attached. Take a duplicate o f  the string and let 
p~ , . . . ,  p~ be the corresponding points to p~ . . . . .  Pk on the new string. Then replace 
chords as follows, I f  a chord, say ~-~PiP" connects Pi and pj  then replace it by 
~2pil~ / Jr ~"2p;pj _L ~"2pip; Jr- ~Qp~p;. By the a~ove replacement, D is replaced by a sum 

of  2 k chord diagrams in ~/(2). Let A be the linear extension of  the above mapping. 
We sometimes need an extension of  the mapping id | | A | id | : d | --+ 
~r174 to id | | A @ id | : JPL (k) --~ Mg(k+l). In our notation, id | | 
A | id | does not mean the usual tensor product any longer. Let D be a chord 
diagram in M{ (k) and P l , - . . ,  Pk be the points on the #th string o f  D where the 
chords are attached. Take a duplicate of  the fth string and let p] . . . .  , p~ be the 
corresponding points to pl  . . . .  , Pk on the new string. Then replace chords as follows. 
I f  a chord, say t?psp/, connect p~ and p / t h e n  replace it by t2p~p~ + ~'~p~pj -}- ~Qpip; -~- 

t2p~p}. I f  a chord, say ~'~Piq' connect the point Pi and a point q not on the ~th 

string, then replace ~'-2pi q by ~Qpiq -~- Qp~q" By the above replacement, D is replaced 

by a sum of  2 k chord diagrams in M4 "(2). Let id | @ A | id | be a linear 
extension of  this mapping. This extended mapping and the original one commute 
with the projections .~/(~) --+ ,~a~ '| and J~(k+~) ---+ s~ | 

We have a counit e : ~ ~ ~ (1)  ~ C. For a chord diagram D ~ ~/~(~), e(D) = 1 
if  D is the chord diagram without any chords and e ( D ) =  0 if otherwise. We 
also need an extension of  the mapping id | | e | id | : ~ |  _~ S~| to 

id| -1) | e | id| : ~r ~ .~{(k-~). For a chord diagram D ~ Jd(~),id | ~) 

@ e | id |  D if there is no chord of  D ending at the yth string and 
id | | e | id| = 0 if otherwise. Let id | @ e @ id | be a linear 
extension of  this mapping. This extended mapping and the original counit commute 
with the projections M{ (~; --+ sr | and -~(~-~) ~ ~ |  

We have an antipode S : ~ ~ ~ .  For a chord diagram D E -~(1),S(D) is a 
copy of  D with opposite orientation for the string. We also need an extension 
of  the mapping id | | S @ id | : ~ |  ~ ~a '| to id | | S | id | : 
~y/(k) __+ ~/(k). Let D be a chord diagram in M{ (k). Change the orientation of  the #th 
string and replace each chord t2 with just one end point at the #th string by - t2 ,  we 
get a chord diagram D ~ ~ Jd  (k). Let id | | S | id | be a linear extension 
of  this mapping. 
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Let q~= @f(~c~lZ,/'223)E,/~(3) , where Of(~212, f223) is defined in Sect. 5. Let 
id |174 r | id eq be an element of  j~(p+q+3) obtained by adding p + q strings, 
numbered from 1 to p and from p + 4 to p + q + 3. The ~tu string of  ~ is num- 
bered by ( + p. By the construction of  r we have the following relations. 

(id | A)  (A(a))  = (A | id) (A(a))  = 0 (A | id) (A(a ) ) r  -1,  a E jgO) 

(id | id | A) ~b (A | id | id)q~ = (id | ~b) (id | A | id) ~b (~b | i d ) ,  

( c | 1 7 4  , 

( i d |  c |  r = 1. (6.1) 

These correspond to relations for a quasi-bialgebra, and so the sequence M (~ M (1), 
. . . .  M (k) . . . .  is a generalization of  a quasi-Hopf algebra in some sense. 

Let 7f  = Z f ( U ) .  Let ~: C--+ MY (1) be a linear extension of  the unit 1 and 
id | | z | id | : M (k) ----+ .//{(k+I) be the linear mapping defined by the fol- 
lowing. Let D be a chord diagram in M (k). Adding a string to D, we get a chord 
diagram D ~. We put a number p (resp. p + 1) to the strings of  D ~ correspond- 
ing to the pth string of  D if p < f (resp. p => ~) and put Y to the newly added 
string. Then id |174 z | 1 7 4  From the definition of  m,A ,a  and S, 
we have 

(id |  | m | id | (id | | S | id | (id | | Aid | �9 a 

= (id | | z | id | (id |  | r | id | �9 a , 

(id |  | m | id |  (id | | S | id |  (id | | Aid | �9 a 

= (id | | t | id | (id |  | c | id | �9 a , (6.2) 

for a E iN(k) and 

m (m |  ( i d Q S Q i d )  r = 7f  , 

m (m |  (S |  ~-1  = 7f �9 (6.3) 

These correspond to relations for a quasi-Hopf algebra, and so the sequence 
M (~ M (I) . . . . .  M(k) , . . .  is a generalization of  a quasi-Hopf algebra in some sense. 

Let R = e ~12/2 C ,///{(2). Then we have 

A ( a ) =  RA(a)R -1 , a E Jg(1) , 

(A | id)R = r R13qb~ 1 R23~ b , 

(id | A)R = q5~I1 R13r R23~ b , (6.4) 

where Rij = e ~ r = t~(f2ij, f2jk). These are relations for quasitriangularity, and 
so the sequence M (~ M (1) . . . .  , M(k), . . .  is a generalization of  a quasitriangular 
quasi-Hopf algebra in some sense. 

As the above argument shows, the sequence M (~ M(1) , . . . ,  M(k), . . .  possess all 
properties needed for a quasitriangular quasi-Hopf algebra. This sequence plays the 
role of  a quasi-triangular quasi-Hopf algebra in the construction of  link invariants 
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as in [2]. The 4-term relation corresponds to the classical Yang-Baxter equation. So, 
once we are given a solution of the classical Yang-Baxter equation, we can construct 
a "state model" of the sequence M (~ M (1) . . . . .  M(k), . . .  as in [5, 18], from which 
we get a C-valued invariant of links. The sequence M (~ M (1) . . . .  , M(kl , . . .  does 
not include the quantum groups, but is a universal object for the algebras generated 
by classical r-matrices. 
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