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VARIETIES OF REPRESENTATIONS
AND THEIR COHOMOLOGY-JUMP SUBVARIETIES
FOR KNOT GROUPS
UDC 515.14

LE TY KUOK TKHANG

ABSTRACT. This paper studies the spaces of representations of knot groups into a linear
group GL,(C), their categorical factor-spaces (i.e., the spaces of all characters of the
representations), and their cohomology-jump subspaces. Connections are established
between the latter and the spaces of representations of dimension one greater. A
complete description is given of these spaces for 2-bridge knots.

Bibliography: 12 titles.

0. INTRODUCTION

In recent years the spaces of all representations of a finitely generated group =
into a linear group GL,(C) have been studied intensively. These spaces are algebraic
subsets in C*?7 for some p € N, and with their help many invariants of the given
group can be constructed.

Each representation of the given group determines cohomology groups of the latter
with coefficients in the representation. The rank of the ith such cohomology group
is constant throughout the space of representations except for a certain closed subset,
which we call the ith cochomology-jump subvariety.

The study of these cohomology-jump subvarieties was begun by S. P. Novikov
(see [1]). Already in the case of 1-dimensional representations there are nontrivial
results. If 7z is a knot group, then the cohomology-jump subvariety in the space
of representations of dimension 1 consists of the roots of the Alexander polynomial
of the knot. This is a reformulation of classical results (see §2.3 below). A natural
guestion to pose is that of the role of the cohomology-jump subvarieties for a knot
group with coefficients in multidimensional representations. The object of this paper
is to study these cohomology-jump subvaricties.

In §1 we lay out the theory of the spaces of representations of finitely generated
groups and their categorical factor-spaces. In §2 we study the cohomology-jump sub-
variety, proving in particular that it is Zariski-closed, and we indicate the connection
of this subvariety with the space of representations of the same group of dimension
one greater. In §3 we describe the spaces of representations for 2-bridge knots; an-
other description of these spaces is given in [8], but we use a different approach to the
computation that in our view is more natural and more suitable for our purposes. In
84 we describe in explicit form the cohomology-jump subvarieties for 2-bridge knots
and present some examples.

The author expresses his thanks to S. P. Novikov for the posing of the problem
and for his attention to this work, and to E. B. Vinberg and S. A. Piunikhin for
helpful discussions.

1991 Mathematics Subject Classification. Primary 20C15; Secondéry 57M25.

© 1994 American Mathematical Society
1064-5616/94 $1.00 + $.25 per page

187




188 LE TY KUOK TKHANG

1. THE SPACE OF REPRESENTATIONS OF A GROUP,
AND THE CORRESPONDING SPACE OF CHARACTERS

I.1.  An algebraic variety will be understood in the most naive meaning of the
term—simply the set of zeros of a system of polynomial equations in C" or an open
subset thereof. The topology will always be understood in the sense of Zariski, unless
otherwise stated.

Let n be a group, with presentation

T={a1,a,...,a |",...,7);

if @ is a knot group, we assume that ¢ = p—1 and all the generators a;, a3, ..., a,
are conjugate to each other. We denote by R,(m) (resp. SR,(n)) the set of all
homomorphisms of 7 into GL,(C) (resp. SL,(C)). An action of the group GL,(C)
is defined on these spaces: if g € GL, and p € R,(n), then g(p) = gpg™!.

It is known (see [6]) that if two semisimple representations of the group 7 into
a linear group have the same characters, they are conjugate to each other. The char-
acter of any representation coincides with that of its semisimple part. The set of all
characters of representations of n into GL, is somewhat smaller than the set of
equivalence classes of representations, but is more convenient to use, because it can
be parametrized as an algebraic variety (see [6]). We denote the set of all characters
of representations of n into GL, (resp. SL,) by X,(x) (resp. SX,(n)). There is
a natural mapping pr: R,(n) — X, (), taking each representation into its character.
The mapping pr (and its restriction to SR,) is regular and also submersive, i.e., 2
set ¥ C X,(n) is open if and only if pr='(Y) is open. SR,(%) and SX,(n) are
closed algebraic varieties.

Let Z, = {z | z" = 1}. If p is a representation of z into SL,, then obviously
zp 1is likewise such a representation, where (zp)(¢) = zp(c); i.e., the group Z,
acts on SR,(z). It also acts on SX,(7). If 7 is a knot group, then H!'(n, Z) =
Z and Hom(m,C*) = C*; and if py € Hom(z, C*), then zpy, € Hom(xn, C*)
where (zpo)(c) = z7'(po(c)); ie., the group Z, acts on C*, and therefore on
SX, x Hom(n, C*) = SX, x C*.

1.1.1. Proposition. Let . be a knot group. Then the variety X,(n) is the quotient
of the variety SX, x C* by the action of the group 7, .

Proof. Consider the mapping A: SX, xC* — X,, h(x, py) = pox, where pox =
pr(pop), p € pr ' (x). Note that tr[(pop)(c)] = po(c) tr(p(c)).
Obviously 4 is surjective, and if z(x, po) = (X', pg), then A(x, po) = h(x', p}).
Conversely, suppose k(x, pg) = h(x’, p;). Let p, p’ be two representations
such that pr(p) = x, pr(p’) = x'. Then ppo = p'py, det(ppo) = det(p'py),
det(pop) = pgdetp, and therefore p? = (p{)". This means that there exists a
z € Z, such that pg = z"lpy;then p=zp', ie., z(x', pj) = (x, po).

1.1.2. Prepoesition. Suppose V C R, is closed and invariant under the action of the
group GL, . Then pr(V) is a closed subset of X, .

Proof. Consider an x € X, that does not belong to pr(¥). Then both sets pr—!(x)
and V are closed and invariant. Hence by Lemma 1 in Chapter 4, §1, qf [10], there
exists an invariant regular function f: R, — C such that [ ly =0 and flp-1(x = 1.
Dropping to X, , we obtain a function f: X, — C such that f(x) =1, f(pr(V)) =
0, and f is regular on X, (since the ring of regular functions on X, coincides
with the ring of invariant functions on R, ; see [6]). This means that there exists
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a Zariski-open neighborhood containing the point x and not intersecting the set
pr(¥V). Thus, pr(V) is Zariski-closed.

1.2. The subspaces of reducible representations. Let 7 be a partition of the number

n, t=(n,n,...,n), iy +---+mn =n,andlet yu beaset (my,..., my) such
that 0 < m; <--- < my = n. Every such set determines a partition of », by putting
ny=my, Npg=my—my, ..., = my —myi_; ; we call this the partition induced by

the set u. In general, many different sets of increasing numbers determine the same
partition; for example, the sets (1, 3) and (2, 3) determine the same partition of
the number 3: (1,2)=(2,1).

We say that a representation p is subordinate to the set u = (my, ..., my) if
there exists a basis in which p has the block form

0 LS

where the elements below the diagonal are zero and the dimensions of the blocks are,
respectively, my x my, (my — my) x (my — my), ..., (Mg — mg_y) x (Mg — myg_y) .
We shall write p < .

Let Ry(n) ={p € Ru(n), p < u}.

1.2.1. Propesition. The set R,(n) is closed in the Zariski topology of R,(m).

Proof. Let E be the set of flags of dimensions (m;, my, ..., m;) in C". Then E
is a (closed) projective variety. Consider the mapping

f:E x Ry(n) — EPTY,

Sla, p)=(a, plai)a, p(a)a, ..., p(ap)a).

The condition p < u is equivalent to the requirement that all the mappings
pla;), i=1,...,p, preserve some point of E. Let D be the diagonal in EP*+!:
D={(a,a,...,a)€ E**'}; D isclosed in EP*'. Let py: E x R,(n) — R,(n) be
a projection onto the second factor. Then R, = p,(f~1(D)), since E is a projective
variety, p, is a closed mapping, and so R, is a closed subset of R,(x).

Let 7 be a partition of the number n. We say that a representation p is subor-
dinate to v if p is subordinate to some set u that induces 7. Let X, be the set of
characters of all the representations subordinate to 7. Then X, = pr(UR,), where
4 runs over the collection of sets that induce the partition 7.

1.2.2. Corollary. X, is closed in the space X,(n).
This follows from the fact that pr is a submersion.

1.2.3. Corollary. The set RS, of irreducible representations is open in R, . Similarly,
the set X3, is open in X, .

2. THE COHOMOLOGY-JUMP SUBVARIETY

2.1. Every representation p: 7 — GL, turns the vector space C" into a left
Z[r}-module. We can therefore define the cohomology groups H'(x, p) with co-
efficients in this module. They are the cohomology groups H!(K(m, 1), p) of the
space K(z, 1) with coefficients in p. The groups H'(n, p) do not change if p is
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replaced by a conjugate representation. Hence the function rk;(x) = tkH m, p),
where pr(p) = x, is well defined on the set X5(n) of characters of all simple (i.e.,
irreducible) representations. On the rest of the variety X,(n) this function is no
longer well defined, since every point of this part of X,(n) corresponds, in general,
to many nonequivalent representations.

We define tk;(x) (for any x € X,(n)) as the greatest of the ranks of the groups
Hi(n, p), where pr(p) =x.

2.1.1. Proposition. Let IL* be the subset (in X,(n)) of all points x such that
tki(x) >k, i,keZ, i,k >0. Then ;% is a closed algebraic subset. In other
words, the function rk; is upper semicontinuous.

Proof. Let TI* = {p € R,(x), tkHi(%, p) > k}. Then 1% is a closed subset.
This fact appears (in a different form) in [1]. The subset ;% is obviously invariant
under the action of GL, ; therefore, pr(ﬁﬁ,’k) is closed in X, , by Proposition 1.1.3.
By definition, pr(ﬁf{k) is precisely Hf,’k. Thus, Hf;'k is closed in X, .

Let k be the smallest value of the function rk; on the variety X, . The subset
I ¥+1 will be called the jump subvariety of the ith cohomology group.

2.1.2. Proposition. Suppose x € 'X,,(n), and let p € R,(n) be a representative of the
unique class of semisimple representations with character x . Then tk;(x) = rtk;(p) .

Proof. We must show that if 7 € pr~!(x), then 1k;(7) < 1k;(p) . Consider the orbits
O(p) and O(t) in R,(n) (remember that the group GL, acts on R,(w)). By
Lemma 1.2.6 of [6], O(p) is closed; O(t) is not closed if 7 is nonsemisimple, but
O(7) D O(p), so that p € O(t) . Since the function rk; is upper semicontinuous and
its restriction to O(7) is constant, we have rk;(7) < rk;(p).

2.2. Cohomology in small dimensions; zero-dimensional cohomelogy. We recall the
construction for computing the cohomology of our group in small dimensions. Con-
sider a 2-dimensional cell complex X consisting of a single O-cell O, p I-cells
a,a,...,a,, and g 2-cells €1,Cy ..., Cq such that d¢; = r;. Let X be the
universal covering of X, O a fixed point over O, and &;, ¢; liftings of the cells
a;, ¢; from O. Then X is a free complex over the ting Z[x], Co()?) = Z[n},
C (A?) = (Z[r])? with generators a;, dz, ..., dp, and Cz(}?) = (Z[x])? with gener-
ators ¢p, G2, ..., &g . We have the sequence

0= GCX) A (X)) 3 cy(X) - 0.

The boundary operator is given by the formulas
~ = 5 3”,’ ~
do(a;) = (a; — 1)O, e =>, 30 ) %
. 1

(8rj/da; is an element of Z[xn]), where d/da; is Fox differentiation (see [4)).
Now, if p: m — GL, is a representation of the group, C" becomes a left Z[zn]-
module. If a € Z[rn], then p(a) is an endomorphism of the module C". Consider

the complex

0 — (Cn)2 P2 ey P& ¢ 0,

where p(8;) is an ng x np matrix, and p(8) an np x n matrix. The first two
cohomology groups of this complex are the groups H%(n, p) and H Wr, p).
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2.2.1. Proposition. For n > 2, the dimension of the zeroth cohomology group makes
no jumps on the set X () of characters of simple representations, and tk H(x , p) =
0 for all p € R (n).

Proof. We have

plar) —1
p(0p) = : ,
play) — 1
and therefore ,

ﬂ er(p(a;) — 1).

If ve HYx, p), then v is a common eigenvector of all the operators pla;) . Since
p 1s simple, we conclude that v = 0. Thus, H%(x, p) =

2.3. The case of i-dimensional representations. The following results are already
known; we give them here for completeness and as constituting an important example.

We have X;(n) = (C*)™, where m =rkH!(n,Z). Let e, ..., e, be generators
for the group H'(m, Z). Any l-dimensional representation of 7 is determined by
a set of numbers (zy, ..., z,) € (C*)™, with (zq, ..., z,)(e) = z; .

In contrast to Proposition 2.2.1, we have:

2.3.1. Proposition. The subvariety of jumps in dimension for zero-dimensional coho-
mology consists of the point {z; = zy = ... = Zm = 1} : the trivial representation is
the only one that has nonzero H(n, p).

Proof. If p is the trivial representation, then obviously p(8p) = 0;if p is nontrivial,
then one of the p(a;) is equal to 1, and then ker p(dp) = 0, so that HO(z, p) =0.

Let M be a matrix with elements in the ring Z[z}, ..., z£!]. Denote by di(M)
the ideal generated by all the minors of order k. Then dk(M ) C d,(M ) for k>1,
and di(M) = 0 for large k. Let A(M) be the last nonzero ideal in the sequence
di(M), dry(M), ....

2.3.2. Proposition. The subvariety of jumps in dimension for 1-dimensional coho-
mology (on Xi(n) = (C*)™) is the set of zeros of the equations A(p(8,)) = O plus,
possibly, the point {zy =z =---= z,, = 1}.

Proof. We have the complex

()2 ©)"®c o,

if (zi,...,zm)#(1,..., 1), then dim p(8) = 1, which means that dim H!(z, p)
= py —1kp(81). If now A(p(8;) = di(p(1)), then tk(p(8;)) becomes less than k
only when (zy, ..., z,) is a root of the ideal A(p(8;)).

When =z is the fundamental group of a knot, A is the principal ideal generated
by the corresponding Alexander polynomial (see [4]). For this group, H3(x, p) =
Vp € R, , whereas the dimension of the second cohomology group jumps only if that
of the first or the zeroth does. Thus, the jump variety consists of the roots of the
Alexander polynomial plus the point 1 (which, incidentally, is never a root of the
Alexander polynomial).

2.4. Connection with representations in SL,. Let 7 be a knot group. Consider
the subset SX) (in SX,(m)) of all characters of reducible representations. If x €
SX% =C and p is a semisimple representation with character x, then p=t®1~!,
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where 7 € X;(n) = C*, t(a;) =t € C*. Let SX; be the subset (in SX,(x)) of all
characters of nonabelian representations.
With this notation, we have:

2.4.1. Proposition. Suppose 1 # x1. Then x belongs to the intersection of SX%(TC)
and SX5(n) if and only if the representations t* and 172 lie on the jump subvariety
of the first cohomology group.

Proof. Suppose x € SX&OSXE. Then there exists a nonabelian representation p
with character x. Since x € SX% , p must be reducible. We have then, in some
basis:

p(ai):(é ;fi), teC*, a;€C, i=1,...,p.

Consider the 1-dimensional representation 7: 7 — GL,, 7(q;) =¢. Then

o= )

is a 2-dimensional representation, not into SL, but into GL,. The matrices tp(a;)
and tp(a;) commute if and only if fa;(12 — 1) = ta;(t> — 1), ie., if and only if
(taj: taj) = (> —1: 12 — 1). Since the representations are nonabelian, it follows that

(ar: ay: ---:ap)gé(tz—l:tz—l: et t2 1),

which means that the vector (ay, ..., a,) lies outside the domain of values of the
differential t%(8), i.e., is not a coboundary.

2.4.2. Lemma. The condition ry =---=r, =1 is equivalent to the system of equa-

tions
al. 8'
2 ! 2 i .
e —_— _...1 . .
ZO<""'—E 1>a1+ + 7T (E )ozp—(), =1, , g

The lemma will be proved in a general form in §2.5. As stated here, it amounts to
the assertion that the vector (a;, ..., ap) is a cocycle. This means that the group
HY(m, 12) is not 0, i.e., that rk;(z2?) > 1. On the other hand, for a knot group the
function rk; on X;(r) is zero almost everywhere. Hence if x € SX)(n) N SX;(x),
then 72 € Ili(n); similarly, t=2 € IT}(n). Conversely, suppose 72 € IIi(n), 72 #
+1. Then there exist numbers «;, ..., a, such that

14
ar;
2 ———l - .=
E T (Baj)a] 0, i=1,...,q,

j=1

and by Lemma 2.4.2 the correspondence

it
aj - 0 t_l

is a representation of the group. Since (a;, ..., @,) is not a coboundary, we have
(riag: - tap)# (=112 =10 - 12— 1).

If T # +1, then ¢ # +1 and therefore > — 1 # 0, which means that the matrices
p(a;) do not commute.
Proposition 2.4.1 can be reformulated:
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2.4.3. Corollary. Let 1 be a knot group. Then x belongs to the intersection SX5 N
SX; if and only if there exists a reducible nonabelian representation p with character
x such that the ratio of the two eigenvalues of the matrix p(m) is a root of the
Alexander polynomial of the knot, where m € = is an element representing some
meridian of the knot.

2.4.4. Proposition. The set SX5(n) is a closed algebraic subvariety of SX;(x).
Proof. We prove that

SX; = {x € SX;(n), dimpr~!(x) > 3}.

Indeed, if x € SX5(n), then there exists a nonabelian representation with character
X . We claim that dim O(p) > 3, where O(p) is the orbit of the element p under
the action of GL,. If p is irreducible, this is obvious, since St(p) = C*, where
St(p) is the stationary subgroup of the element p, and O(p) = GL, /St(p) = PSL,,
so that dimO(p) = 3. If p is reducible, there exists a basis in which

pa)= (5 ).

and since p is nonabelian, we have (ay:az: --- tap) # (1:1: .-+ 2 1). It is easily
seen that then a matrix that commutes with all the p(a;) must be of the form c-1.
Hence dim O(p) = 3; and since O(p) C pr~(x), we have dimpr~!(x) > 3.

Conversely, suppose dimpr~!(x) > 3. We must show that there exists a non-
abelian representation p with character x. Suppose on the contrary that pr—!(x)
contains only abelian representations. It is easily seen that the set SRS of all abelian
representations of a knot group is a closed irreducible algebraic variety in SR,(7),
being isomorphic to SL;; hence if dimpr~'(x) > 3 and pr~!(x) is entirely con-
tained in this set, then pr~!(x) = SR%. But pr(SR4) = SX; = C—a contradiction.
Thus,

SX5(m) = {x € SXy(n), dimpr~!(x) > 3},

and since the function dimpr~! is upper semicontinuous, SX;(x) is a closed alge-
braic subvariety.

We have the obvious inclusion SX3 C SX3. In §3 it will be shown that for the
groups of 2-bridge knots, SXj = SX; ; but in general SXj # SX; (if z is not a knot
group).

2.5. Representations of knot groups of dimension greater than one. For a knot group
m, there exists a presentation 7 = (a;, a2, ...,4dp | 1, ..., 7p—1) such that the 2-
dimensional cell complex X constructed as prescribed in §2.2 is aspherical, i.e.,
such that X = K(m, 1). For example, it suffices to take the standard Wirtinger
presentation (see [5]). This means that we always have Hi(n, p) =0 for i > 3 (the
complex X has no cells of dimension greater than 2). On X; the dimension of
the zeroth cohomology group has no jumps, and since H%(z, p) = 0 and the Euler
characteristic is always zero, we have tk H*(n, p) = rk H(n, p). It follows that
I1L(n) = II2(x) ; we shall also denote these both simply by II,(x) and cell this the
cohomology-jump subvariety on X5 (m).

It is easily seen that minrk,(x) =0 for x € X,,, since if p is a representation of
the form p =17, ®---® 7,, where the 7;: # — C* are such that the ratio 7,;/7; is
not a root of the Alexander polynomial for any i, j, then H'(n, p) = 0. It follows
that I1}(n) = {x, tk;(x) > 1}.

We denote by SR}, the set of all representations in SR, (n) that are the sum of an
(n — 1)-dimensional irreducible representation and a 1-dimensional representation;
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let SX}, = pr(SR,l,(n)). In contrast to the case of 1-dimensional representations,
SX},; is isomorphic to X3(n) for n>2.

This isomorphism can be described as follows. Suppose x € SX,ﬂ 41 and p is
a semisimple representation with character x. Then p = 7 ® pg, where pg is
1-dimensional and t € RS(zn), with po = (dett)~!. Put hy(x) = pr(zr). Then
ho: SX,,(m) — X5 () is the isomorphism.

We consider also an interesting mapping 4;: X§ — X3, defined as follows: for
x € X5 and p € prlx, put Ay(x) = pr[(detp)~!p]. It is easily seen that k; is
an epimorphism, and that A () contains exactly n + 1 points. Indeed, if y € X,
and p € pr~'(y), then A7 '(y) = pr((det p)!/**1. p), and hy: X3 — X5 is a covering
of X3 by a second copy of X5 .

Let h: SX),, — X5 be the composite mapping, & = h; o hy. For n > 3 this is
a covering with fiber Z,.;. We denote by SX; the set of all x € SX, such that
dimpr~!(x) > n? — 1. Then SX}, is a closed subset of SX,, and SX; C SX; .

2.5.1. Theorem. The image of the intersection SX., NSX.,, under the mapping h
is the cohomology-jump subvariety T1,(m).

Proof. We preface the proof with the following important lemma.

2.5.2. Lemma. Let r(ai,...,a,) be a word in the letters af', ..., a¥', and
R(Ai, ..., Ap) the same word in the letters AT', ..., AE' (ie., we replace a; by
A;); Flay, ..., ap) the free group with generators ay, ..., a,; F(Ay, ..., Ap) the
free group with generators Ay, ..., Ap; and

p:F(ay,...,ay) > GLyy1 and p':F(4,y,..., 4p) — GL,

representations such that in some basis

where v; is a vector in C*. Then

_ (PR _ & (ORY
p(r)_(——0 7)o where v—gp 94, U;.

Proof of the lemma. We use induction on the length of the word r, with r = aju
or r = al'lu_ We verify only the case r = al_lu , the remaining cases being similar.
Thus, r = al"u and

plar) = (4 ) 1= ).

Then

where

which was to be proved.

Suppose x € SX}, aNSX;,, and po € pri(x), po semisimple. Then py =
7@ (det79)~!, 79 € RS,. Consider the orbit O(pg) and the stationary group St(po) .
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By the results of [6], O(po) is closed. Regard the group St(po) as a subgroup of
GL, . It is then easily seen to be of the form

' 0

.1 Vo
di-1 :O , where d,, d, € C*,

- —— | A

0-7071d

so that dim St(pp) = 2. Hence dim O(pg) = dim(GL,, / St(pgy)) = n2—2n—1. On the
other hand, dimpr~!(x) > n? + 2n. This means that there exists a representation
p € pr-i(x) that lies outside the orbit O(py). But the semisimple part of this
representation p must coincide with pg, and therefore in some basis we have

pla) = (g4 - @entaon

where v; € C" and 7 = (detto) 79, pr(t) = h(x). Fix this basis. By Lemma 2.5.2,

P
or;j :
ET<8aJ-)vi=0 for j=1,...,p—1,

i=1 !

ie., 1()(vy, ..., vy) = 0. This means that the set (vy, ..., v,) is a cocycle. We
prove that it is not a coboundary. Indeed, if (v, ..., v,) is a coboundary, there
exists a vector v € C" such that v; = (7(a;) — 1)v. But then p is conjugate to pg,
since p = PpoP~!. where

i.e., p € O(po), and we have obtained a contradiction. It follows that H!(xn, r) #£ 0,
so that A(x) € I, (xn).

Conversely, if y € II,(n), then since # is onto, there exists a point x € SX,’, +1
such that 4(x) = y. We claim that x € SX}, (7). Let po be a semisimple represen-
tation with character x, po = 7od(detto)~!, pr[(detto)~'1o] =y, (dettg) l1g=17.
From Lemma 2.5.2 and the fact that H!(n, ) # 0, it follows that there exists a rep-
resentation p € pr-!(x) that lies outside the orbit O(p,). Clearly O(p,) C pr—'(x),
O(p) C pr-!(x). We must show that dimpr—!(x) > n2 + 2n. Assume the con-
trary; dimpr=!(x) < n? + 2n. Then dimpr—!(x) = dim O(py) = n2 +2n — 1. The
sets pr-!(x) and O(po) are closed, while O(p) is not, and O(p) D O(po) (see [6],
Chapter 1). Hence dimO(p) = dimO(p). Let V be an irreducible component of
maximal dimension of the variety O(py). Then V is not contained in the closure

(O(p)\O(po)) , whereas this closure does contain O(p) since O(p) C O(p)\O(po),
and O(p) D O(py) O V—a contradiction. This means that dimpr—!(x) > n? + 2n,
i.e., x € SX, . The theorem is proved.

Let us consider the group St(p), where p is a representation.

2.5.3. Lemma. If dimSt(p) <1, then St(p)=C*={d-1,d € C*}.

Proof. We have g € St(p) & gp(a)g™! = pla;), i = 1,...,p; ie., St(p) =
GL,N{g € M,, p(ai)g = gp(a;)}, where M, is the set of all matrices of order
nxn. The second set is a linear space, and it contains the set {d-1, d € C}. Clearly,

dim St(p) is equal to the dimension of this linear space; therefore, if dimSt(p) <1,
then St(p) =C*.

Lemma 2.5.3 indicates that if the orbit O(p) has the maximal dimension n%—1,
then the stationary group St(p) is C*. Let SR be the set of all representations
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p € SR, whose stationary group is C*, and SX}®* its image under the projection
pr. Obviously, SX; D SX7**.

2.5.4. Propesition. The intersection SX), , NSXP® coincides with the intersection

SX}, +1NSX;,, 1 therefore, its image under the mapping h of Theorem 2.5.1 coincides
with the cohomology-jump subvariety Tl,(7).
Proof. Clearly,
(SXRPT NSXp41) C (SX511 NSX 1),

since SX;o1 C SX} ;-

Suppose x € SX},, NSX}, 41 and 7 € prri(h(x)). As in the proof of Theorem
2.5.1, take a semisimple representation po with character x, and let p € pr~!(x) be
nonsemisimple. From the proof of the theorem we see that dim O(pg) = n’>+2n—1,

O(po) is closed, O(p) D O(po), and O(p) N O(py) = @ ; it follows that dim O(p) >

dim O(pg) . This means that dim O(p) > n? + 2n, i.e.,, dimSt(p) < 1; by Lemma

2.5.3 this means that St(p) = C*, i.e., x € SX;¥]. Q.E.D.
It was shown in §2.4 that SX5 = SX7** (SX3™ is simply the set of characters of
all nonabelian representations). Whether this eqguality holds for all dimensions, we

do not know.
3. THE GROUPS OF 2-BRIDGE KNOTS

In this section we compute the space of characters of representations into SL,.
The space of representations has been described in [8], but the different approach to
the computation we use here is, in our view, more natural and more suitable for our
purposes. The proof of Theorem 3.3.1 below is a generalization of the proof in [9]
for the case of the figure-eight knot.

3.1. 2-bridge knots (see [4]). A knot is said to be 2-bridge if it can be obtained
by closing up a braid of four strands with four semicircles (two upper ones and two
lower). (See Figure 1.)

L1 nn

Tt Uuu

FiGURE 1

The fundamental group of the knot has a simple form:
n={(a, b|lwa=bw),

where
w = a1 b gt b1 ... g pr | g = *1.

3.2. Representations into SL,. Let F be the free group generated by the two el-
ements @ and b. Then n = F/G, where G is the normal subgroup generated
by the element r = w—'b~lwa. It is easily seen that SX,(F) is isomorphic to
C3; specifically, the numbers trp(a), tr p(b), tr p(ab) uniquely determine a repre-
sentation p in SX,(F) (see [7]). Let T be the subset of SX,(F) consisting of
the characters of all representations of F for which trp(a) = trp(b). Then T is
the 2-dimensional complex space C?. For any element ¢ of F (i.e., any word in
the letters a*! and b*!) there exists a polynomial P, in two variables such that
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tr p(c) = P.(tr p(a), tr p(ab)) for every representation whose character belongs to the
set T' (see [7]). Abusing the language, we shall say that a representation p belongs
to T if its character belongs to 7.

We recall the following formulas, to be used below (see [7], [9]). Let C; and C,
be elements of GL,. Then

() tr(C1 ) = tr(Cy) tr(Cy) — det Cy tr(Cl”ICz),
(2) tr(C7Y) = (det €))L r(Cy).

3.2.1. Lemma. Suppose u € F, i.e., u is a word in the letters a*' and b*'. Let
u1(u) be the word obtained from u by interchanging the letters a and b. Then
tr p(u) = tr p(uy (1)) for any representation in T .

Proof. Consider the automorphism u,: F — F, p(a) = b, p(b) = a. Then
p o py is likewise a representation of F, and obviously pr(p o u;) = pr(p); so
trp(u) = trp(u,(u)) forany ue F.

3.2.2. Lemma. Suppose the word u is obtained from u by reversing the order of the
letters. Then trp(u) =tr p(u) forany p in T.
Proof. Let u;: F — F be the automorphism 4

ta(a)=a"", pa(b) =b7"
Then popuy: F — SL, is a representation, and pr(p o u) = pr(p). Therefore,
tr p(ua(u)) = trp(u). By formula (2), trp(ua(u)) = trp[(#2(u))~']; and since
(1)~ = u we have trp(u) = tr p(u) .

3.2.3. Corollary. Let w = a®b*na®2b®n-1...a%p% (w € F). Then for any represen-
tation p in T we have

tr p(wa) = tr p(bw), tr p(b~'wa) = tr p(bwa™").

Proof. Observe that u(w) = w. Therefore pi(wa) = w(aw) = pi(a)u(w) =
bw. Lemmas 1 and 2 allow us to conclude that tr p(wa) = tr p(bw). Similarly,

pi(bwa=t) = yy(a~'wb) = b~'wa, and therefore trp(b~'wa) = tr p(bwa~").

We define a grading in Z[¢, t;] by putting degt, = 1, degt, = 2, where §; =
trpla), ty =trp(ab).

3.2.4. Lemma. degP, does not exceed the length of the word u.

Proof. We use induction on the length of « . If the lemma holds for the words x and
ax , then it holds also for the word a~'x; indeed, tr p(a='x) +tr p(ax) = t; tr p(x).
Therefore, we can assume that in the word u all the letters a and b have positive
powers. If u = xa’y, then tr p(u) = ¢, tr p(xay)—tr p(xy) , and the lemma holds also
for u. It suffices then to consider the remaining case that ¥ contains no expression
of the form a? or »?. This means that if the length of u is greater than 3, then u
has the form
u = (ab)’x,

so that tr p(u) = tytr p(abx) — tr p(x), and degP, < deg P, + 4. The case that the
length of « is less than 4 can be verified directly.

3.3. The character varieties for nonabelian representations. We have wa = bw,
which means that a and b are conjugate. So for all representations p of the
group 7, trp(a) = tr p(b). This means that the set SX,(n) of all characters can be
imbedded into 7' = C?. Put ¢ = trp(a), i, = tr p(ab). These are two independent
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coordinates for the variety T, and the trace of any element of # is a polynomial in
t; and ¢, : it suffices to regard this element as an element of the group F, and the
representation p as a representation of F with character in 7 .

Rewriting the equality wa = bw as w = bw; !, we obtain

Py(ty, 1) = Pyya—r1(t1, t2).
It turns out that this equality determines the character variety SX,(m).

3.3.1. Theorem. The character variety SX,(n) is an algebraic subvariety of the va-
riety T = C?, and is determined by the equality Py,,-1 — Py = 0. Furthermore, we
have the factorization Py, — Py = (24t — 1)@y, (11, tp) . Here, if X' is the word
obtained from x by deleting the two end letters, then

Dy =Py — Py +- 4+ (=1)" Pyt + (= 1)".

The first factor 12 —t, — 2 determines the character variety for abelian representations,

ie., SXé(n); the second factor ®,, determines the character variety for nonabelian
representations, i.e., SX5(m).

Proof. We prove first the equality
waa—l - Py = (t% -1 - 2)(I)w(tl P 12)

by induction on the length of the word w . Suppose this equality holds for the word
u=w,ie.,
Paub—' - Pu = (t% —lh— 2)(1)14

(for u the letters a and b interchange). We consider separately the two cases
w=aub and w=a lub~!. :

a) w = aub. Everywhere below we write trx for trp(x), which should not
cause any confusion. We have tr(bwa™!) = tr(bauba'). Applying formula (1)
with C; =a~!, C, = baub, we obtain

tr(bwa™') = t, tr(baub) — tr(bauba) = t, tr(b*au) — tr[(ba)?u].
Again applying (1) to the factorizations tr(b - bau) and tr(ba)(bau), we get
tr(bwa™") = t1[t; tr(bau) — tr(au)] — ta tr(bau) + tru
= t% trw — ttr(au) — ttrw +tru
=(t} —tp -2 trw + 2trw — t; tr(au) + tru
=(? —ty - 2)trw + trw + [tr(aub) — t; tr(au)] + tru.
By formula (1),
tr(aub) — ty tr(au) = — tr[(au)b] + tr(au) tr(b) = — tr(aub™?).
Therefore,
tr(bwa™') = trw + (1} — t — 2)trw + tru — tr(aub™").
By the induction assumption,
tru —tr(aub™) = (£ — t — u)®,,
tr(bwa™") —trw = (1} =t = 2)(rw — ®,) = (1} — 1 — 2)@,,,

which was to be proved.
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b) w=a"lub='. Then
tr(bwa™!) — trw = tr(ba"ub~'a™") — trw

=ntr(@tub™la™) —trw —tr(b~'a" ' ub a7 ")

=tlhtr(ub™la™!) —tr(ub™ )] — trw — trtr(ub~'a™ ") + tru

=l -t - 2)trw +trw — ¢ty tr(ub™!) + tru

=(} -ty - 2)trw +tru —traub™!

= (ff - ta - 2)(trw — @)

= (t% -1 = 2)®y,

and the second case is complete.
To continue with the proof of Theorem 3.3.1, we need a lemma from [9]:

3.3.2. Lemma. Let R, A, B be three matrices in SL, such that trA = trB = t,,
tr(AB) # 2, tr(AB) # 12 -2, trR =2, tr(RA) = tr(RB) = t,. Then R =1 (the
identity matrix).

We prove several further lemmas, generalizing Lemma 2 of [9].
3.3.3. Lemma. For any representation p of F with character in T,
tr(w™'b~ wa) =2 + (12 — 1, — 2)@2,.
Proof. We have
tr(w™ b wa) - 2 = tr(w b wa — 1) = trfw b~ (wa — bw)].
Applying formula (1) with C; = w~!b"!, C, = wa — bw, we obtain
tr(w™ b wa) - 2 = tr(w™'h7!) tr(wa — bw) — tr{bw(wa — bw))).
By Corollary 3.2.3, tr(wa — bw) = 0. Hence
tr(w™ b 'wa) — 2 = trbwbw — tr bw?a.
We prove the lemma by induction.
a) Suppose w = aub . Then
tr(bwbw) — tr(bw?a) = trla(ubaauba)] — tr{(ba)(ubauba))
= tytr(ubaauba) — tr(ubaaub) — t, tr(ubauba) + tr(ubau)
= t; tr(a*ubauba) — tr(a®ubub) — t tr(w?) + tr(uba)
= 11t tr(aubaub) — tr(ubaub)] — t, tr(aubub)
+ tr(ubub) — ty tr(w?) + tr(u?ba)
= (] — 12 — 2) tr(w?) + tr(ubub) — tr(u?ba)
+ 2[tr(w?) — ¢t tr(aubub) + tr(u*ba)].
By formula (1), tr(w?) = (trw)? — 2. Using the induction assumption, we obtain:
tr(bwbw) — tr(bw?a) = (1 — t, - 2)[(trw)? + B2]
+ 2[tr(w?) — t; tr(aububd) + tru*ba — 2 + 1, + 2].

Consider the last term:

ty tr(aubub) + £ = ty[tr(aub - ub) + tr(ub)~ ' (uba)]
=ty tr(ub) tr(aub) = t; tr(w) tr(ub),
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tr(w?) 4+ 2 = (trw)? = trw tr(aub),
tr(ulba) + t = tr(uuba) + tr(u"uba) = tr(w) tr(u).
Therefore,
tr(bwbw) — tr(bw?a) = (1} — t, — 2)[(trw)? + 2]
+ 2trwltraub — ty trub + truj,

(£ =ty = 2)[(trw)? + ®2] + 2 trw[tru — tra”'ub]
= (13—t = 2)[(trw)? + @I+ 2trw(s — 1, — 2)@,,
(22—t - 2)[(trw)? + @ — 2trw®,] = (1} — 1, — 2)@3,.
b) Suppose w = a~'ub~!. Then
tr(bwbw) — tr(wabw) = tr(ba 'ua'ub™') — tr(a”'ub~'aba'ub™")
= tr(a 'ua~u) — t tr(w?) + tr(a *ub"'a" ' ub=?)
= tr(a™'ua"u) — t(tr(w?) + ty tr(@ ub~a " ub?) — tr(ub~ta"'ub™?)
= tr(a"'ua"u) — t tr(w?) + 1[t tr(w?) — tr(@a ' ub~a" )]
—titr(ub~'a 'ub™") + tr(u?bla™t)
= (8 — t, - 2) tr(w?) 4 2 tr(w?) = 241 tr(a 'w) (b e ) — 1]
+tr(u?b a7 + tr(a"'ua )
= (1} — 1, - D[(trw)” + ©}]
+2[(trw)? =ty tr(a” ) trw + £ + tr(ub a7 h)]
= (8 -ty — D)[(trw)? + P21 + 2 trw[tr(w) + tr(u) — t; tr(a™ ' u)]
= (1} — th — )[(trw)? + P2] + 2 tr(w)[tr(u) — tr(a~'ud)]
= (1} -t - D[(trw)? + @2 — 2 tr(w)D,]
= (1} —t, - 2[trw — ®,]
= (-1, - 2)®},. ‘
This completes the proof of Lemma 3.3.3.
3.3.4. Lemma. For all representations in T,

tr(w™ b~ 'wab) — t; = (1} — t — 2)®y[1; Dy — tr(aw)].
Proof. We have
tr(w™ b~ 'wab) — t; = trffw ' (b~ 'wab — wa)]

= trw[tr(b~'wab) — tr(wa)] — trfw(b~'wab — wa)]
= trw?a — trwb~'wab = trw?a — tr{(bw)(b~'wa)]
= trw tf{(wa) — t, — tr(bw) tr(b~ 'wa) + tr(w b~ ?wa)
= tr(wa)[trw — tr(b~'wa)] — t; + tr(b *waw™")
= tr(wa)®y (2 — ty — 2) + t; tr(b~ 'waw™") - 21
= tr(wa)®y (£ — ty — 2) + t; (tr(w ™ 'b~ wa) - 2)
= (by Lemma 3.3.3) (2 — t; — 2)®y[11 @y — tr(wa)].
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tr(u).

2
7]

) + tru],
]

- 2)®,,
~ )2,

iba 'ub™Y)
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ta~'u)]
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~2)
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3.3.5. Lemma. For any pair of numbers t;, t, € C, there exist matrices A, B € SL,
such that wA =ttB =1t and wWAB =t,. If t # 12 — 2, then A and B can be
chosen so as not to commute; and if in addition t, # 2, then any two such matrices
will not commute. '

Proof. We choose 4 and B in the form

(5 M) a5 2)

Then ¢y, =trd=trB=t+11,
2+ ! (2 t
AB“(z‘lﬂ =2 ) Bd = tB 72+ B )

h=twAB =0 +1t72+B=1}-2+8.

Clearly, Vi;,t, € C there exist matrices 4, B such that tr4d = trB = ¢; and
trAB =1t,. If t, # 2 —2,then B # 0, and obviously 4B # BA. Moreover, if A
and B commute, then there exists a basis in which

t 2 o (EY o«
A—(o z—l)’ B"(o t’r")’

where either A =0 or A =1, and then either t, =tr4dB =2 or #, = 2 — 2. This
means that if ¢, # 2 and t% —2+#1t,then 4 and B do not commute.

3.3.6. Lemma. ®,(2,2)=(-1)""1,

Proof. Consider the trivial representation p(a) = p(b) = 1. Here t; = 1, = 2.
Hence for any representation with ¢, = ¢, = 2 we have trw = 2 Vw. This means
that

and

Dy(2,2)=2-242— 4 (=1)" = (=1)""L

We proceed now with the proof of Theorem 3.3.1. Clearly, if p is the represen-
tation p(a) = A4, p(b) = B, then Py,,-1 — P, = 0. We must prove the converse:
if ¢, t, satisfy the equation Py, — P, = 0, then there exist matrices 4 and B
such that W~!B~!WA = 1, where W = w(4, B). We have either B-1-2=0
or @y(t;,1)=0.1If 2 -1, —2 =0, consider the matrices

[t 0
A_B—'(O t—l)a

where ¢+t~ =¢;. Then obviously the representationn p such that p(a) = A and
p(b) = B is as required.

Suppose t% —1,—2#0 and @, = 0. We prove a stronger assertion, namely, that
if two noncommuting matrices satisfy the conditions trd =trB =t,, trAB =t,,
then W~!B-'WA =1 (by Lemma 3.3.5 there always exist noncommuting matrices
A and B with this property). Let R = W~!B~!WA. Suppose first that , # 2.
By Lemma 3.3.3, trR = 2. By Lemma 3.3.4, trRB = trf(W~!B~'WAB) = 1,.
Let us compute tr(RA4). We have tr(RA™!) = te(W~1BW) = ¢, . By formula (1),
tr(A='R) +tr(4R) = t; tr R = 2¢; . It follows that tr R4 = 1, . Since all the conditions
of Lemma 3.3.2 are satisfied, we have R = 1. Now consider the case #, = 2. Observe
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that in view of Lemma 3.3.6 the polynomial ®,, is not divisible by #, —2, so that the
intersection of the varieties {®,, = 0} and {t, — 1 = 0} consists of a finite number
of points; by continuity (or the fact that the set SX,(n) is closed) we conclude that
R = 1. This completes the proof of the theorem.

3.4. Some properties of the variety of representations.

3.4.1. Preposition. The polynomial ®,, € Z{t,, t,] has no quadratic divisor; in other
words, the ideal (®y) in Z[t;, t,] is radical.

Proof. For any element u € F and any representation p € T we have:

tr(aub) + tr(a~'ub) = t, tr(ub), tr(a”'ub) + tr(a"'ub™!) = 1, tr(a" ')
= tr(aub) = tr(a”'ub=!)(mod t,).

It follows that @, = ® + ¢, H, where ® = ®,,,, wy = (ab)*, H € Z[t;, 1;].

Below in §4.3 (Proposition 4.3.2) we show that @ is a polynomial in 7, (inde-
pendent of ¢;) and has no multiple divisor other than unity. Let ®@,, = (D’l‘-‘ el
where the ®; € Z[¢,, t;] are not constants. Write ®; in the form

®; = Gi(t) + ti(Hi(t, ta).

It is easily seen that & = G’l“ .- Gkr . Observe that deg®,, = deg® = 2n, and
. therefore degG; = deg®;. This means that the G; are likewise not constants, and
therefore k1 =ky=---=k,, =1; ge.d.

The following corollary will be useful. We call two elements # and v in Z[F]
congruent (¥ = v) if they determine the same element of the factor-ring Z[F]/
(wa = bw).

3.4.2. Corollary. If u=v, then P,— P, is divisible by ®,, .

Proof. Consider a pair of numbers ¢, f, such that ®,(¢;,5) =0, 6 #2, th #
2 — 2. The set of such pairs is everywhere dense on the curve {®, = 0}. For any
such pair there exist matrices 4 and B such that putting p(a) = 4, p(b) = B
gives a representation of our group n. Then trp(u) = trp(v). This means that
Pt1,t))=Py(t1, ) if @y =0and t, =2, £, # tf — 2. Proposition 3.4.1 allows
us to conclude that P, — P, is divisible by &, .

4. THE COHOMOLOGY-JUMP SUBVARIETY
OF A REPRESENTATION INTO GL;

4.1. Wehave m = (a, b | wa = bw). It is easily seen that the word r = w~ b~ lwa
is not a power; therefore, by Lyndon’s theorem (see [11], Chapter 3) the complex

X constructed in §2.2 is aspherical, i.e., X is homotopic to the complement of our -

knot in S3. Consider the complex of modules
02t 2 g
where 0, = (0r/8a, 8r/db). Clearly,
H*(m, p) =2—dim(p(dr/da), p(dr/0b)),

and therefore
tky(p) > I & dim(p(dr/da), p(0r/ab)) < 1.
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Let § = (detp(a))'/?, 64 = p(a), 6B = p(b). Then 4 and B belong to
SL,. Let T be the set of all characters of representations of z# into GL, such
that trp(a) = tr p(b). Then for any element u of the group ring Z[F] there exist
polynomials @, , O, such that

trp(u) = Qu(§i1 ) tl 9 Z2) s detp(u) = Q:‘(J:i:l ’ tl ) t2)s

where t), =trd, ©, =tr(4B), p e pr“‘(’f) .
Similarly to Corollary 3.4.2, we have:

4.1.1. Corollary. If u, v € Z[F], u=v, then
Qu— 0y =0 (modd,), 0, — 0, =0 (mod ®y,).

4.1.2. Corollary. det(dr/0a) = det(dr/d0b) (modD,) for any representation p €
X3 (7).

Proof. We have the fundamental identity (see [5])

or or
%(a—l)+~—b—(b~) r—1

(1—6t1+§2)detg (1—(5t1+§2)det +f<1>w,

where f € Z[6%!,t,, t;]. Since (1 —&t; + 62) is irreducible in Z[6%!, 11, t,], @y
is not divisible by (1 —d¢; + 62). It follows that

or

det 32 *det%(mod(bw),
g.e.d.
We recall that w = a®1 b ... gén bt ,
Define
e(w)=¢e +e&+--+&,
e(w)=¢é +&3+ - +&,,
e(w®) =gp g+ +ép.
Put
_ 8w
4.2. We have
or _ ow or _ Bw

Clearly, a necessary condition for a cohomology jump is

det@:—dtﬂso.

It turns out that this is also sufficient.
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4.2.1. Theorem. The polynomial 6= det[1+ (b—1)0w/8b]— Dy, is the product
of two factors, (1 —dt; + %) and S, (0%, 11, 12). The second factor determines
the cohomology-jump subvariety on the character variety X5(m) of the irreducible
representations;, the polynomial S, has the form

(%) Sw = |w| — |w'| + -+ (1) w" D).
Proof. We first prove the formula
62 det [1 +(b— 1)%%’—] — @, = (1 -6t +62)Sy,

where Sy, is defined by (x), using induction on the length of the word w . Suppose
the formula holds for u =w’', w = aub or w =a 'ub=!.
a) For w =aub, ow/0b=adu/db+ au,

det (1 +(b— 1)%}5‘1) ~ 52,

_ (b 1)2% ~ D det 2 _ s2ew)

=1+tr _(b 1)6b]+det(b 1) det 3b ) Dy,
[ du ow

=1+tr _a%(b —1)+aub - au] + det(b — l)detgfb—

—trw + 62,

| du
=1+tr _a (u—l—%(a—l))—au}

dw

+ 52e(w)(pu

Jw

Ju
2e(w) _ _ _ -
=149 @, —dt; —tr [a——aa(a 1)] + det(1 — b) det 55

= (1 =31y + 6%) - 62 (1 +tr—g—g(a- 1)—524%1,)
ou ou ow
2..Y% - s _ _ 2 et
+4 traa(a 1) traaa(a 1)+ (1 =6t +6°)det 55

Jw ou
— — 2 _ 2e(w) 2
(1-6t+6°) [1+det———-—ab S$,0 +0 det——aa]

ou ou ou ou
+é°tr Baa o) traa tr (a 8a> +traaa

= (1 - 51‘1 +52) [det ?ﬂ + deta_w _ Su52e(w)]

Oa ob
= (1 = 8t; + 62)S,,6%®),

b) For w = a~'ub~!, dw/db = a~'0u/ob — a lub~', dw/da = —a ' +
a~'ou/da,

REPRESE
det [1 +(b- 1)
=1+tr|(d

+ det(b -

=1+1tr|a
=1-0H+

=(1-671¢

7,
-2 —
+0 tra

+ (1 -6t
=(1-6t +

0
— 24p =
S tr

=(1-6t; 4
=(1-dt; +
=(1-d +

4.2.2. Lemma. Let |
det |1+ (b -

Proof. Denote the lef
M(1-6¢4

= det

= det

and by Corollary 4.1.2

by a multiple of ®,, :

M(1 -4ty 4



/6b] — ®,, is the product
econd factor determines
XS () of the irreducible

+62)Sw,

f the word w . Suppose

§2e(w)q>w

l)dtab

ow

(1 - b)det 5

(u)¢>u)

2
|+ 6%) det 2% 8b

ou
det '%jl

-~ dw/fa = —a”! +
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det [1 (b1 )%%] _ 2w,

_ [ 1y,-10% _
_1+tr_( Da 8b alu+atub~ ]
+ det(b — I)det 5?)- —trw 4 6P,
_ 101y _ oW | s2ew)
=1+tr _a Bb(b 1) —a " u| +det(b—1)det ) + WD,

Ju
—1— 2e(w) @ _ -1 _ _
1-6t,+6 D, —tr [a aa(a 1)] + det(b l)det 6b

=(1=6"1 +072)—92 [1 + trgéz-(a 1) - 528“‘)@“]

+6‘2trg%(a— 1)—tr—§%+tra“%
+ (1 -6t +52)det?9—1g v
=(1-3Jt; +6%) (5*2 + det%% — 6%, + 672 det g%)
—5‘2trg—Z-— gu+t16 ‘trg—a-
= (1 -0t + %) (5“2 +5‘2det5— -0 2tr ? +det5b— —sxwg )
= (1 -6t +8?%) (deta— + det ?;Z 52"’<“’)Su)

= (1 =4t + 6%)8,0%W),
4.2.2. Lemma. Let p be a representation in T . Then

‘Z";’ +(b— 1)%7;—)--10];@%—:2—2)51” (mod @,,).

Proof. Denote the left-hand side by A . Then
M(1—6t; +6%) = Mdet(b—1)

=det[(1 )(b—1)+(b—1)(aw a“’)(b )J

:det{(1—w)(b—1)+(b—1)[w—1+%-(b—a)J},

and by Corollary 4.1.2 this expression differs from

det [1+(b— 1)

det [wa —wh+ (b~ 1)%%(1; _ a)]

by a multiple of ®,,:

M(1 -6t 4 6%) = det [wa—wb+(b— 1)%(1)—(1)} + [y,

= det(b — a) det [w —-(b- 1)—} + f oDy,
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We have
det(b—a) =6%(t3 —t, - 2), det |{w — (b — l)éE = det Q (mod ®,,)
da da
=>M(1-66+0)=(1-68t +3)@ —t2—2)Sy + & Dy.
Since ®,, depends only on f; and t,, g is divisible by (1 —dt; +62), and M =
(2 —1,—2)S, (mod®d,) as claimed.

We proceed with the proof of the theorem. We have

or or
2 — 7 _ di or
tk H*(m, p) = 2 — dim (p (661) , P ((%)) ,
and therefore

z (5 (20) (2
rkH(n,p)21=>d1m<p<aa‘ , P 35 <1

= detp (%) = det (p (%+ g——g)) =0.

It follows that in this case S, = 0. This means that the cohomology-jump sub-
variety lies in {S, = 0}. We prove now the converse: if p € {Sy = 0}, then
dim H%(z, p) > 1. Since p € {S, = 0}, we have det(dr/da) = det(dr/0b) =0. If
det p(a — 1) # 0, then from the identity

or ar _

it follows that Im p(9r/8a) = Im p(8r/8b), which means that Im p(dr/da, dr/db)
<1,1ie, tky(p)>1.

We must still consider the case det p(a—1) = 0. Choose a vector v € C? such that
er=p(1—a)w #0 and e; = p(1 — b)v # 0. Such a vector exists, since p(a) # 1,
pb)y# 1, peXi(n). Then

Qie+ ﬁe—O'
Plaa ) " P\5p )27

If Im p(0r/B8a) # Im p(8r/db), then p(dr/da)e; =0 = p(dr/0b)e, . There are two
possibilities: e; = e, and e, # e;.

First case: e; # e, . Then in the basis e;, e, the matrices p(8r/da) and p(9r/db)
are of the form

or ..(0 al) or _(ﬁl 0)
P\8a)=\0 ) P\&5)7\$ 0)°

while det[p(0r/da + dr/0b)] = 0. This means that (a;: ) = (Bi: 2), ie,
Im p(8r/da) = Im p(0r/8b).

Second case: e; = e, . Then -

p(l—aw =p(l -b)v, pla—bw =0, detp(a—b)=1} -12-2=0.
We know that the intersection of this variety with the variety {®,, = 0} of represen-
tations of 7 into SL, is discrete, while § must satisfy the equality 62 ~dt;+1=0.
This means that only finitely many points belonging to {S,, = 0}NX5(x) fall into this
situation, while Il(7) 1s a closed set in XJ. Therefore, again dim Hm,p)>1.
This completes the proof of the theorem.

4.3. Examples. a) Our first example is the torus knot series (type T(2, 2n+ 1)).
These are 2-bridge knots; in the standard notation of [4], they are the knots
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b(2n + 1, 1). The fundamental group is 7 = (a, b|wa = bw), where w = (ab)".
We denote the corresponding polynomials ®,, and S, by ®, and S,.
Let f:Z xZ — Z{t,, t;] be the mapping determined by the formulas

f(0’0)=23 f(Oa 1)=t2’ f(nam):f(man)a
f(15 1)=t%-‘2+t%(12—2), f(n+lam):t2f(n>m)—f(n—l’m)'
4.3.1. Proposition. The polynomials ®, and S, are of the form

q)_[f(0>n)+f(03n+l)] S—M.
o fr+2 ’ "5 62+ 1

-2
o ",

and @, is independent of t,.
Proof. By Theorem 2.2.1, ®, = tr(4B)" —tr(AB)"~! + ...+ (—1)". By formula (1),
tr(AB)" = ty tr(AB)"~! — tr(4B)"~2; furthermore, tr AB = t,, tr(1) = 2. Therefore
tr(AB)" = f(0, n). Let t =u+u~'. Then f(0, n) =u"+u" and
@, =f0,n)~fO0,n=-1)+---+(=1)"
=W —u o (D)) @ e (D) = (=D
un+1 + (—l)” u—n—l + (-—1)" 3 (_])"

u+1 u 41
W tu w4yl f(0,n) + f(0,n+ 1)
N u+u-1+2 - th+2 ’

which proves the first part.
By Theorem 4.2.1,

S =|(ab)"| - |(ab)"~!| + -+ + (=1)""|ab],

1= [ () s (202

da b
_— n _ n
=5 [d‘“/’ (1—1_(““;;)—)) +0%detp (11—_(‘%)
5727(1 + 62
- Tt_(s.(%_+5%[1 — 8710, n) + 6
1+ 42 _ p
= =5t 5510 4 52 _ 10, n)].
Therefore
1462 _
Sp = m[(éz" — g2 + -4 (—1)")

FET =0T 4 (1)) = @y = (=1)]
1+52 52n+5—-2n +§~2n—2+52n+2

T 1=+ 04 02+0-242
=6—2n ) 1+§4ﬂ+2
1— 021, + 04

The following proposition was used in §3.4.
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FIGURE 2
4.3.2. Proposition. @, is independent of t; and has no multiple divisor (other than
unity) in the ring Z[t,].
Proof. The first part is obvious, since f(0, n) = u" +u~", where u+u~! =1t,, and

1+u)(u" +u 1)
u+ut+2

(Dn(u) = (

Since the polynomial #” + u~"~! has no multiple roots over C, ®,(f;) has no
multiple divisors, g.e.d.
Observe the identity

Sp—1+ Sn+1 = (62 + 5—2)Sn >
which is easily verified. There is a similar identity for HOMFLY polynomials. Let
P,(x,y) be the HOMFLY polynomial of the torus link 7(2, 2n + 1), where n is
a half-integer: n=1/2,1,3/2,.... When n is an integer, 7(2, 2n + 1) is a link
with two components. We have (see [12])
x7'Py + xPapi = YPoi1)2,
X Pyiij2 + XPuizn = VPt
X7 Pyt + XPyiy = yPyi3p.

Multiplying the first equality by x~!, the second by y, the third by x, and adding,
we obtain:

x_an +X2Pn+2 = (y2 = 2)Ppy.

(See Figure 2.)
b) Our second example is the knot series 6(6n + 1, 3) (see [4]). Here w =
(ab)"(a~'b~1)"(ab)".

4.3.3. Propesition. The following relations hold:

(1)n=__t 1 {f(n, n)[f(O,n)+ f(O,n+1)]- f(0,n)— f(O,n—-1)},
2+ 2

1

Sn=54—5212+1

{[2+f(n, n)](§2n+l +§—2n—1) _ 211(52n +6—2n)
+ (@7 672 —2£(0, m)(8 + 671 + 11.£(0, m)}.

We omit the proof. We indicate certain properties of the cohomology-jump variety.
If P, is the HOMFLY polynomial of the knot, then

X—ZPn + xzpn+2 = <y2 =2)Ppyy-
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Let us consider the possible recurrence relations among the S, . Observe that for
f(n, n) we have

fn+3,n+3)—f(n,n)=@G-D[f(n+2,n+2)— f(n+1,n+1)].

Hence there exist constants ¢y, ¢, ¢3 such that f(n, n) = ¢; + c;u" + c3u™" , where
u+u~! =1t,. From this it is easily such that for any nine successive polynomials S,
there is a connection of the form

Sn+8 + A7Sn+7 +e+ AISn-H + Sn = O>

where A;, ..., A7 are polynomials in #, and (6 +6~') and are independent of 7.
If we take a more complicated knot series—for example, w, = (ab) (@ b~ 1) (ab)"
x (a='b=1)*(ab)"—we find that the recurrence sequence for S, becomes longer,
while the knots are obtained one from the other by sequences of Conway surgeries
(see [4], [12]), and the relation between their HOMFLY polynomials looks exactly
the same as in the case of torus knots. Thus, a connection between the S, and the
HOMPFLY polynomials seems improbable.
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