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The perturbative invariants of rational homology 3-spheres
can be recovered from the LMO invariant

Takahito Kuriya, Thang T. Q. Le and Tomotada Ohtsuki

ABSTRACT

We show that the perturbative g invariant of rational homology 3-spheres can be recovered
from the Le-Murakami-Ohtsuki (LMO) invariant for any simple Lie algebra g, that is, the LMO
invariant is universal among the perturbative invariants. This universality was conjectured in
Le, Murakami and Ohtsuki [‘On a universal perturbative invariant of 3-manifolds’, Topology 37
(1998) 539-574]. Since the perturbative invariants dominate the quantum invariants of integral
homology 3-spheres [K. Habiro, ‘On the quantum sls invariants of knots and integral homology
spheres’, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs
4 (Geometry and Topology Publications, Coventry, 2002) 161-181; K. Habiro, ‘A unified Witten—
Reshetikhin—Turaev invariant for integral homology spheres’, Invent. Math. 171 (2008) 1-81; K.
Habiro and T. T. Q. Le, in preparation], the LMO invariant dominates the quantum invariants
of integral homology 3-spheres.

1. Introduction

In the late 1980s, Witten [35] proposed topological invariants of a closed 3-manifold M
for a simple compact Lie group G, which is formally presented by a path integral whose
Lagrangian is the Chern—Simons functional of G' connections on M. There are two approaches
to obtain mathematically rigorous information from a path integral: the operator formalism
and the perturbative expansion. Motivated by the operator formalism of the Chern—Simons
path integral, Reshetikhin and Turaev [33] gave the first rigorous mathematical construction
of quantum invariants of 3-manifolds, and, after that, rigorous constructions of quantum
invariants of 3-manifolds were obtained by various approaches. When M is obtained from
S3 by surgery along a framed knot K, the quantum G invariant 7 (M) of M is defined to be a
linear sum of the quantum (g, Vy) invariant Q%> (K) of K at an rth root of unity, where g is
the Lie algebra of G and V), denotes the irreducible representation of g whose highest weight is
A. On the other hand, the perturbative expansion of the Chern—Simons path integral suggests
that we can obtain the perturbative g invariant (a power series) when we fix g and obtain the
Le-Murakami-Ohtsuki (LMO) invariant (an infinite linear sum of trivalent graphs) when we
make the perturbative expansion without fixing g. As a mathematical construction, we can
define the perturbative g invariant 78(M) of a rational homology 3-sphere M by arithmetic
perturbative expansion of 7% (M) as r — oo (see [25, 29, 34]), where PG denotes the quotient
of G by its centre. Further, we can present the LMO invariant Z"™MO (M) (see [27]) of a rational
homology 3-sphere M by the Aarhus integral [4]. It was conjectured [27] that the perturbative
g invariant can be recovered from the LMO invariant by the weight system Wg for any simple
Lie algebra g. In the sly case, this has been shown in [30]; see Figures 1 and 2, for these
invariants and the relations among them.

Received 17 June 2010; revised 4 November 2011.
2010 Mathematics Subject Classification 57M27 (primary).

Second author is partially supported by National Science Foundation.



THE PERTURBATIVE INVARIANTS 459

Chern—Simons
path integral

Operator Perturbative
. expansion
formalism
Fixing g Without fixing g
Quantum Perturbative The LMO
invariant 7 (M) invariant 78(M) invariant Z™° (M)

FIGURE 1. Physical background.
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FIGURE 2. Mathematical construction.

The aim of this paper is to show Theorem 1.1; see also the first remark at the end of this
section.

THEOREM 1.1 (see [3, 22]). Let g be any simple Lie algebra. Then, for any rational
homology 3-sphere M,

We (20 (M) = | Hy(M; 2)| 4800251,
where |H,(M;Z)| denotes the cardinality of the first homology group Hy(M;Z) of M.

We give two proofs of the theorem: a geometric proof (Subsections 4.1 and 5.2) and an
algebraic proof (Subsections 4.2 and 5.1). The theorem implies that the LMO invariant
dominates the perturbative invariants. Further, since the perturbative invariants dominate the
quantum Witten—Reshetikhin—Turaev invariants of integral homology 3-spheres [12, 13] (see
the forthcoming paper by Habiro and Le), it follows from the theorem that the LMO invariant
dominates the quantum invariants of integral homology 3-spheres; see the second remark at
the end of this section for rational homology 3-spheres.

Let us explain a sketch of the proof when M is obtained from S3 by surgery along a knot.
The LMO invariant Z“MO (M) can be presented by the Aarhus integral [4]. It is shown from
this presentation that the image WQ(Z LMO (D)) can be presented by an integral of Gauss type
over the dual g* or, alternatively, by an expansion given in terms of the Laplacian Ay~ of g*. On
the other hand, as we explain in Subsection 6.2, the perturbative invariant 79 (M) is presented
by a Gaussian integral over h*, where h is a Cartan subalgebra of g or, alternatively, by an
expansion given in terms of the Laplacian Ay~ of h*. We then show that WQ(ZLMO(M)) =
T79(M) by establishing a result relating integrals over g* and integrals over h*, similar to
the well-known Weyl reduction integration formula. Alternatively, we show WQ(Z LMO(M)) =
78(M) by using Harish-Chandra’s radial component formula (also known as Harish-Chandra’s
restriction formula) that relates the Laplacian Ag- on g* to the Laplacian Ay« on h*. For a
sketch of the algebraic proof, see Figure 3.
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FIGURE 3. Sketch of the algebraic proof of Theorem 1.1, when M is obtained from S* by
surgery along a framed knot K.

In the case when M is obtained from S® by surgery along a link, we present two proofs.
The first one is more algebraic. We reduce the theorem to the case of surgery along knots
by using the fact that the operators involved are invariant under the action of g. The other
proof has quite a different flavour. We show that two multiplicative finite-type invariants of
rational homology spheres are the same if they agree on the set of rational homology spheres
obtained from S® by surgery along knots (for finer results, see Theorem 5.4). This result is also
interesting by itself. The theorem then follows, since both Wy (2O (M)) and 79(M), up to
any degree, are finite type. This part relates the paper to the origin of the theory: the discovery
of the perturbative invariant of homology 3-spheres for SO(3) case [29], leads the third author
to define finite-type invariants of 3-manifolds.

The paper is organized as follows. In Section 2, we review definitions of terminologies and
show some properties of Jacobi diagrams. In Section 3, we present the proof of the main
theorem, based on the results proved later. We consider the knot case in Section 4 and the link
case in Section 5. In Section 6, we discuss how the perturbative invariant can be obtained as
an asymptotic expansion of the Witten—Reshetikhin—Turaev invariant and give a proof that
our formula of the perturbative invariant is coincident with that given in [25]. We also show
that finite parts of the perturbative invariant 79 are of finite type.

REMARK. It was announced in [3] that the perturbative g invariant can be recovered from
the LMO invariant. However, that proof is not yet published. The first author [22] showed a
proof, but his proof is partially incomplete. The aim of this paper is to show a complete proof
of the theorem.

REMARK. For rational homology 3-spheres, it is known [7] that the quantum Witten-
Reshetikhin-Turaev (WRT) invariant ™ O(S)(M ), at roots of unity of order co-prime to the
order of the first homology group, can be obtained from the perturbative invariant 75 (M).

Hence, the LMO invariant Z"M© (M) dominates TEO(B)(M) for those roots of unity.

2. Preliminaries

We recall basic facts about Lie algebras in Subsection 2.1 and theory of the Kontsevich invariant
in Subsection 2.3. We introduce Laplacian operators in Euclidean spaces in Subsection 2.2 and
present the LMO invariant in Subsection 2.5.

2.1. Lie algebra

We review the known facts about simple compact Lie algebras, mainly to fix the notations.
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In this paper, G is a compact, connected, simple Lie group, g its Lie algebra and b is a
Cartan subalgebra of g, that is, the Lie algebra of a maximal torus in G. Let g* and h* be,
respectively, the R-dual of g and b.

The complexification g. = g ®g C = g @ +/—1 g is a simple complex Lie algebra. Let 7 : g, —
g. be the R-linear map defined by J(x) = /=1 . As vector spaces over R, g. = g ® Jg. The
subalgebra . = h & Jh is a Cartan subalgebra of g.. Every R-linear functional on b extends
C-linearly to a unique C-valued functional on .. Hence, we can consider h* as an R-subspace
of h.*, and h.* = h* ® J(h*), where again J : g.* — g.* is the multiplication by /—1.

The Killing form B of g, is negative definite on g and positive definite on Jg. We define an
inner product on g by (z,y) := —B(z,y). We also consider Jg as a Euclidean space, where the
inner product is the restriction of B. Then J : g — Jg is an isomorphism of Euclidean spaces.
Using (-, ), we can identify h* with a subspace of g*. For a function g on g*, its restriction to
h* will be denoted by P(g).

Let ® C h." be the root system associated with (g, ). It is known that ® is purely complex,
that is, if « € ® and x € b, then a(z) € v/—1R. In other words, ® C J(h*). In fact, the R-span
of @ is J(h*). Let @ be a set of positive roots of g. and ¢4 be the number of positive roots
of g. One has ¢ = (dimg — dimb)/2 = (dim g — rank g) /2. Following the common convention
in Lie algebra theory (see, for example, [14]), we call § € h*, a real root, a real positive root,
or a real dominant weight, if J(() is, respectively, a root, a positive real root, or a dominant
weight. Let ®% = (7)71(®,) be the set of positive real roots, and let p be the half-sum of all
positive real roots. For a dominant real weight A € h*, let V) be the irreducible representation
of g. whose highest weight is J(\).

The Weyl group of (g.,b.) is the group acting on R® = 7(h*) generated by reflections in
the walls perpendicular to root vectors o € ®. Using the isomorphism (J)~! : J(b*) — b*, we
define the action of W on h*, and then on h by the isomorphism h* — h induced by the inner
product. This action of W on § coincides with the action defined by the normalizer of H (in
G) on b, where H is the maximal torus of G whose Lie algebra is b; see, for example, [20].

The following W-skew-invariant function D on h* is important to us:

P\ = [] (A, a)

ncat (p,a)

When X — p is a dominant real weight, D()) is the dimension of V) _,.

A source of functions on h* is given by the enveloping algebra U(g). For g € U(g), we define
a polynomial function on h* as follows: suppose that A — p is a dominant real weight. There is
a unique polynomial function, denoted also by g, on bh* such that g(\) is equal to the trace of
the action of g on the g.-module V\_,. A proof of this fact is given in the Appendix.

Let S(g) be the symmetric tensor algebra of g, which is graded by the degree. Using the
Poincare-Birkhoff-Witt isomorphism U(g) = S(g), we transfer the degree on S(g) to a degree
on U(g), that is, the degree of = € U(g) is the degree of its image under the Poincare-Birkhoff—
Witt isomorphism.

Let Yy :S(g) — U(g) be the Duflo-Kirillov map (see [2, 6, 8]), which is an isomorphism
of vector spaces. We can extend Ty multi-linearly to a vector space isomorphism g :
S(g)®* — U(g)®’. When restricted to the g-invariant parts, Yy : S(g)® — U(g)? is an algebra
isomorphism. Note that U(g)? is the centre of the algebra U(g).

2.2. Laplacian on a Euclidean space

Suppose that V' is a Euclidean space. In our applications, we will always have V- =gor V = b,
with the Euclidean structure coming from the invariant inner product.
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Let V*¢ be the direct sum of ¢ copies of V*, the dual of V. As usual, one identifies
the symmetric algebra S(V') with P(V*), the algebra of polynomial functions on V*. More
generally, one identifies S(V)®¢ with P(V*), the algebra of polynomial functions on V**.

The Laplacian Ay, associated with the Euclidean structure of V, acts on S(V) = P(V*)

and is defined by
Ay-=> 02,

where {e;} is an orthonormal basis of V. It is shown by direct calculation that, for x,y € V|
%Av(xy) = (w,vy), the inner product of z and y.

Let i be a formal parameter. For a non-zero integer f, let us consider the following operator
5{} ) S(V) = P(V*) — R[1/h] expressed through an exponential of the Laplacian and the

evaluation at 0:
Ay -
f 1%
& (g) = exp < 2fh> (9)

Because Ay« is a second-order differential operator, it is easy to see that if g is a homogeneous
polynomial of degree deg(g), then

€ R[1/A).

=0

0 if deg(g) is odd,

E‘(/f) (9) =< scalar . . o)
hdes(9)/2 if deg(g) is even.

For an (-tuple f := (f1,..., fe¢) of non-zero integers, let

&l =&y s(v)® = P(v*) — R[1/h).
J

In other words, if g1 ® ... ® go € S(V)®*, then 5‘(}‘)(91 ®...Qq) = H§:1 E‘(/fj)(gj).

We want to extend 5‘(/f ) to a formal power series in P(V*9)[[A]]. For the convergence of the
images of the extension, we will restrict ourselves to the following subalgebra. A formal power
series Y07 g h" € P(V*)[[R]] is tame if deg(gn) < 3n/2. Let Py(V**) C P(V*)[[A]] be the
set of all tame formal power series. Then P;(V*¢) is a subalgebra and 5‘(}0 ) extends to a linear
operator from P (V**) to R[[A]], also denoted by 5‘(,f ). as follows

e (Y gan) =S (g

Tameness and equation (2.1) guarantee that the right-hand side is in R[[A]].

2.3. Jacobi diagrams and weight systems

Here we review Jacobi diagrams and weight systems. For details, see, for example, [31].

A uni-trivalent graph is a graph every vertex of which is either univalent or trivalent. A
uni-trivalent graph is vertex oriented if at each trivalent vertex a cyclic order of edges is fixed.
For a 1-manifold Y, a Jacobi diagram on Y is the manifold Y together with a vertex-oriented
uni-trivalent graph such that univalent vertices of the graph are distinct points on Y. In figures,
we draw Y by thick lines and the uni-trivalent graphs by thin lines, in such a way that each
trivalent vertex is vertex oriented in the counterclockwise order. We define the degree of a
Jacobi diagram to be half the number of univalent and trivalent vertices of the uni-trivalent
graph of the Jacobi diagram. We denote by A(Y") the quotient vector space spanned by Jacobi
diagrams on Y subject to the following relations, called the AS, IHX, and STU relations,
respectively,

o> T -H- X Y -] X
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For S = {x1,...,x¢}, a Jacobi diagram on S is a vertex-oriented uni-trivalent graph whose
univalent vertices are labelled by elements of S. We denote by A(xg) the quotient vector space
spanned by Jacobi diagrams on S subject to the AS and THX relations. In particular, when S
consists of a single element, we denote A(*g) by A(*). Both A(f) and A(xg) form algebras with
respect to the disjoint union of Jacobi diagrams, and A(LI* |) forms an algebra with respect to
the vertical composition of copies of LI* |.

We briefly review weight systems; for details, see [1, 31]. We define the weight system Wy (D)
of a Jacobi diagram D by ‘substituting’ g into D, that is, putting D in a plane, Wy (D) is defined
to be the composition of intertwiners, each of which is given at each local part of D as follows.

gxg 009

909

I

Here, the first map is the invariant form of g, the second is the map taking 1 to >, X; ® X,
where {X;};cs is an orthonormal basis of g with respect to the invariant form, and the third is
the Lie bracket of g. For Dy € A(x) and Dy € A(]), we have the following intertwiners as the
compositions of the above maps, and we can define Wy(D1) € S(g) and Wy(D2) € U(g) as the
images of 1 by these maps.

\\ ..... / S(Tg) W U%m

R R

In a similar way, we can also define Wy : A(U’|) — (U(g)®%)? and W, : A(xs) — (S(g)®)9;
they are algebra homomorphisms. If D is a diagram with & univalent vertices, then Wy(D)
has degree at most k. The weight system VVg[C is defined in the same way. Since VVg(C = Wy by
definition, we denote Wy_ by Wj. Further, we define Wg by Wg(D) = W4(D) ke for a Jacobi
diagram D of degree d.

There is a formal Duflo-Kirillov algebra isomorphism Y : A(x) — A(]) (see [2, 6]). The
obvious multi-linearly extension Y : A({z1,...,2¢}) — A(U’ |) is not an algebra isomorphism,
but a vector space isomorphism. The following diagram is commutative [2, Theorem 3].

Wy

Tlg Tglg glp (2_2)

A) —— U@?[Ir)] —— PO [1A]

Here P(h*)" denotes the algebra of W-invariant polynomial functions on h*, and g is the
composition of the Harish-Chandra isomorphism U (g)? — S(§)" (see [17, Section 23.3]) and
the isomorphism S(h)"Y — P(h*)". The operator ¢4 can also be described as follows: suppose

z € U(g)? and X — p is a real dominant weight. Then z acts as a scalar operator on V)_,, with
the scalar being 14(z)(A). In other words,

Pa(2)(A) = 2(A)/D(N). (2.3)

Actually, in [2], the commutativity of diagram (2.2) is proved for the complexification of the
involved spaces. In the complexified version of diagram (2.2), all the upper horizontal maps
and the two boundary vertical maps preserve the real parts; it follows that all the other maps
must also preserve the real parts, and we still have commutativity for diagram (2.2).
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2.4. The Kontsevich invariant

A string link is an embedding ¢ of ¢ copies of the unit interval, [0,1] x {1},...,[0,1] x {¢},
into [0, 1] x C, so that ¢((¢,7)) = (¢,7) for all e € {0,1} and 1 < j < £. We obtain a link from
a string link by closing each component of LI |. A (string) link is called algebraically split if
the linking number of each pair of components is 0.

The Kontsevich invariant Z(T) (see [21, 26]) of an f-component framed string link T is
defined to be in A(LI* |); for its construction, see, for example, [26, 31]. Let v = Z(U), the
Kontsevich invariant of the unknot U with framing 0; the exact value of v is calculated in [6].
Using the Poincare-Birkhoff-Witt isomorphism A(S') 22 A(]) (see [1]), we will consider v as
an element in A(]).

Let A® : A(]) — A(U’]) be the cabling operation that replaces an arrow by ¢ parallel copies
(see, for example, [26, Section 1]). The modification Z(T) of Z(T') used in the definition of the
LMO invariant is

Z(T) := v® (A (1) Z(T).
Applying YT~ followed by the weight map, we define the following element:

Q%(T) = Wo(Y™HZ(T))) € (S(g)®")%[[1]. (2.4)
Let Py(g*)® = (S(g)®")[[R]] N Pa(g*").

LeEMMA 2.1. For an algebraically split O-framed string link T, one has Q%(T) € Pp(g**)?.

Proof. A strut is a Jacobi diagram on S = {z1,...,z,} without a trivalent vertex; it is
homeomorphic to an interval. An element in A(xg) is strutless if it is a linear combination
of diagrams which does not contain a strut. For a framed string link 7', the strut part of the
Kontsevich invariant is given by the linking matrix.

Suppose that D is a strutless Jacobi diagram on S. Let v; denote the number of univalent
vertices and v3 the number of trivalent vertices of D. As in graph theory, we say that two
vertices of D are adjacent if they are connected by an edge. Because D is strutless, every
univalent vertex of D must be adjacent to some trivalent vertex. On the other hand, each
trivalent vertex is adjacent to at most three univalent vertices. It follows that v; < 3wz and
hence

deg(Wy(D)) < v1 = v1/4+ 3v1/4 < 3vs/4 4+ 3v1 /4 = 3deg(D)/2. (2.5)

Since T is algebraically split and has O-framing, YYZ(T)) is strutless. From (2.5), it follows
that Wy(T=5(Z(T))) =3, gnh", where deg(g,) < 3n/2. Hence, Q9(T) € Py(g*")e. O

2.5. Presentations of the LMO invariant

In this section, we recall and modify a formula of the LMO invariant [27] of a rational homology
3-sphere M using the Aarhus integral [4] for the case when M is obtained from S® by surgery
along an algebraically split link.

Suppose that T' is an algebraically split ¢~-component string link with O-framing on each
component, and L is its closure. Suppose that the components of T are ordered. Let f =
(f1,-.., fe) be an L-tuple of £ non-zero integers, and let M be the rational homology 3-sphere
obtained from S® by surgery along L with framing fi, ..., fe.

Let 6 € A(0) be the following Jacobi diagram

0 = @ € A(0). (2.6)



THE PERTURBATIVE INVARIANTS 465

Define
Oy, Oa,

I(T, f) = exp (— Eigfj 9) <1:[exp (-2}] U ) ,(T-I)Z(T)> AWM. (27

Here, for a Jacobi diagram D; whose univalent vertices are labelled by 0, , ..., 0, and a Jacobi
diagram D, whose univalent vertices are labelled by x4, ..., 2, we define the bracket by

the sum of all ways of gluing the 9, -labelled univalent
(D1,Dq) = | vertices of Dy to the z;-labelled univalent vertices of e A(0),
D5 for each j

if the number of 9, ;-labelled univalent vertices of D; are equal to the number of x;-labelled
univalent vertices of Dy for each j, and put (D, Ds) = 0 otherwise. In particular, when T is

the trivial string link |, one has
Oz Og

Z(],£1) = exp (;4180> <eXp (:F; U > ,Tl(y2)> € A(0).

Then, the LMO invariant of M is presented by

SLMO (5 — Z(T, f) Y )
) [15_1 Z(1, sign(f))) € AW) (2.8)

Here, the bracket of this presentation is called the Aarhus “integral”, since its corresponding
Lie algebra version is actually an integral on (g*)®* [3].

We remark that the presentation (2.8) is obtained from [5, Theorem 6], noting that (with
notations from [5])

Ao = [ [TT%2 ) 2w ax.

Hr;jl (Z(L)) = Hr;jl (Z(T)) exp (-%’JM) Hexp (j;f m )

Tj Tj

which are obtained from [5, Lemma 3.8 and Corollaries 3.11 and 3.12].

3. Proof of the main theorem
In this section, we show the proof of the main theorem in Subsection 3.3 based on
Propositions 3.4 and 3.5, proved in later sections.
3.1. Some lemmas on weights of Jacobi diagrams

In this section, we show some lemmas on Jacobi diagrams that are used in the proof of
Proposition 3.3.

LEMMA 3.1.  For a Jacobi diagram D € A(x) and a non-zero integer f,
8, 0,

() ) -

Proof. The bracket can be presented in terms of differentials as explained in [3, Appendix].
We verify this for the required formula concretely.
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By expanding the exponential, it is sufficient to show that
9y O,

W, <<( U )d,D>) — AL (Wy(D))

Since both sides are equal to 0 unless D has 2d legs, we can assume that D has 2d legs.
When d =1, (3.1) is shown by

X;=0- (3.1)

Wy (< Umv D>) =Wy (2 D ) =2B(Wy(D)) = Ag- (Wy(D)),

where B is the invariant form. When d = 2, putting Wy(D) = >, Y1 1 Y21 Y3,Ya, for Y; ; € g,
(3.1) is shown by

= ZB(YT(l),zmYT(z),k)B(YT(:’,),k, Yr(a)k)
T,k

> 0x, (Ye()0)0x, (Yr2)0)0x, (Yr(3).0)0x, (Yra).1)

7%,k

= A (Wy(D)),

where the sum of 7 runs over all permutations on {1,2,3,4}. For a general d, we can show
(3.1) in the same way as above. O

LEMMA 3.2 [22]. For the Jacobi diagram 6 given in (2.6), W4(0) = 24|p|?, where p is the
half-sum of positive real roots.

Proof. Tt is shown from the definition of the weight system (see, for example, [31]) that
Wq(0) = Tr(C, g), the trace of the Casimir element C acting on g via the adjoint representation.
It is known that Tr(C,g) = dimg (see [17, Section 6.2]), and by the Freudenthal-de Vries
strange formula [9, 47.11], dim g = 24(p, p). Hence, we have Wy (6) = 24|p|>. O

3.2. Comparing the LMO invariant and the perturbative invariant

We again assume that M, L, T, f are the same as in Subsection 2.5. Since Q%(T) € Py(g*‘)?
by Lemma 2.1, we can define Sg(,f)(Qg (1)) € R[[A]].

PROPOSITION 3.3. Assume the above notations. The LMO invariant of M, after the
application of the weight map, has the following presentation

Il (Ta f)
[15_, i (1, sign(f;))’

W20 (01)) = (3.2)

where

l
LT, f) = | [ e P12 ) &g (@8 (1)).
j=1
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Proof. Apply the algebra map W, to (2.8),

__ W@ms)
TT5_, We(Z(1. sign(f;)))

Wa( 240 (01))

Using Lemmas 3.1 and 3.2 and the definition of Z(T', f) in (2.7), we get

WQ(I(Tﬂ .f)) = Il(Tﬂ -f)7

which proves the proposition. |

The perturbative invariant has a very similar presentation, as asserted in the following
proposition, whose proof will be given in Subsection 6.3, where we present the perturbative
invariant.

PROPOSITION 3.4. The perturbative invariant has the following presentation

IQ(Ta f)

T9M) = ,
) [T I2(1, sign(f;))

where

14
LT, f) = | [ e 712 | &7 (n#+D)* 1o (Q4(T))).

j=1

To prove the main theorem, one needs to understand the relation between Séf ) and Séf ).
We will prove the following proposition for £ = 1 in Section 4 and for a general ¢ in Section 5.

PROPOSITION 3.5. There is a non-zero constant ¢4 such that for g € Py(g**)® and any
(-tuple f = (f1,..., f¢) of non-zero integers one has
¢
&7 () = [ [1(-26)cq | &7 (D)4 (9)), (3.4)
j=1

where we recall that ¢ is the number of positive roots of g.

REMARK 1. Recall that if x € g, then one can consider x as a polynomial function on h*;
see Subsection 2.1 and the Appendix. Correspondingly, Y4(g) in the right-hand side of (3.4)
belongs to U(g)®‘[[A]] and is considered as function on h*¢ with values in R[[A]].

3.3. Proof of main theorem

Proof of Theorem 1.1.  We prove the theorem in the following two cases.



468 T. KURIYA, T. T. Q. LE AND T. OHTSUKI

Case 1 : The manifold M is obtained from S® by surgery along an algebraically split link L.
We assume that 7" and f are as in Subsection 2.5. One has

14
L(T, f) = [ [T e P12 | e (@o(r))

L

£
= | [ e foternre H —2f;)% ¢ | £ ((h#+ D)®T,(Q%(T)))

Jj=1
14
H 2f] ¢+Cg IQ(T’ f)’ (35)

where the second equality follows from Proposition 3.5 since Q®(T) € Py (g**)®. In particular,
applying (3.5) to (T, f) = (|, sign(f;)), and taking the product over j, one has

¢ ¢
T 2L, sign(s;) H —2sign(f;))** cgla(1, sign(f;)))- (3.6)
Jj=1 Jj=1
Dividing (3.5) by (3.6) and using Propositions 3.3 and 3.4, we have
0 =T[5 o
Hence, o
Wo(Z"MO(M)) = |Hy (M, Z)[*+7%(M). (3.7)

This completes the proof of Theorem 1.1 in this case.

Case 2 : The manifold M is an arbitrary rational homology 3-sphere. This case can be
reduced to Case 1 using the well-known trick of diagonalization of Ohtsuki [29], as follows.

By Case 1, the theorem holds for the lens space L(m,1), which is the result of surgery
on S3 along the unknot with framing m. Further, since the leading coefficient of the LMO
invariant is 1, the formal power series W, (Z™O(M)) € R[[h]] is invertible. It is known [29]
that there exist lens spaces L(mi,1),...,L(mxy,1), such that the connected sum M’ :=
M#L(my,1)# ...#L(my,1) can be obtained from S* by surgery along some algebraically
split framed link. Both the LMO invariant and the perturbative invariant are multiplicative
with respect to the connected sum. Hence, once we have the theorem, which is the identity
(3.7), for M’ and all the lens space L(m;,1), and each Wy(Z"MO(L(m,1))) is invertible, we
also have the identity (3.7) for M. This completes the proof of Theorem 1.1 in this case.  [J

4. The knot case

In order to complete the proof of the main theorem, we need to prove Propositions 3.4 and
3.5. The aim of this section is to prove Proposition 3.5 in the case £ = 1. We call this case the
knot case, since Proposition 3.5 with £ =1 is enough for the proof of the main theorem when
M is obtained from S3 by surgery along a knot. We present two proofs of Proposition 3.5 with
¢ = 1: a geometric proof in Subsection 4.1 and an algebraic proof in Subsection 4.2.

4.1. First proof: geometric approach

4.1.1. Gaussian integral and 8 . Suppose that V' i 1s a Euclidean space and f is a non-zero
integer. The following lemma says that the operator 8 can be expressed by an integral.
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LEMMA 4.1. For g € Py(V*%), considered as a function on V* with values in R[[h]], one has

) = g ), 0 (S ) e

REMARK 2. Here, g(x/\/—2fh) is the function on V* with values in C[[E*/?]] defined as
follows. If g is of the form g = 2%, where z € V, then

g (\/_%%) = g@)(V=2R) ).

The square root in the right-hand side does not really appear, since if d is odd, then both sides
of (4.1) are 0.

Proof. We can assume that g € S(V). Every polynomial is a sum of powers of linear
polynomials. Since both sides of (4.1) depend linearly on g, we can assume that ¢ is a power
of a linear polynomial. By changing coordinates, one can assume that g = ef, where e; is the

first of an orthonormal basis eq, ..., e, of V. The statement now reduces to the case when V is
one-dimensional, which follows from a simple Gaussian integral calculation; see, for example,
[8, Lemma 2.11]. O

4.1.2. Reduction from g* to h*

PROPOSITION 4.2. Suppose that g is a G-invariant function on g*. Then
J gdx = ¢4 J D?*P(g) du,
g* h*

provided that both sides converge absolutely. Here, ¢q is a non-zero constant depending only
on g.

Proof. 1t is clear that if such ¢y exists then it is non-zero, since there are G-invariant
functions g, for example, g(z) = exp(—|z|?), for which the left-hand side is non-zero.

The co-adjoint action of G on g* is well studied in the literature; see, for example, [19]. A
point x € g* is regular if its orbit G - x is a submanifold of dimension dim g — dim b = 2¢, the
maximal possible dimension. It is known that the set of singular points has measure 0. Every
orbit has non-empty intersection with h*, and if x is regular, then G -z N h* has exactly |W]|
points. Since the function g is constant on each orbit, we have

J ) g(x)dx = ﬁj ) Vol(G - z)P(g)(x) dz.

The volume function is also well known; it can be calculated, for example, from
[8, Chapter 7]:

Vol(G - x) = &D?(x), (4.2)

where ¢} is a constant. From (4.2), we can deduce the proposition, with ¢; = & /|W].

Here is a simple proof of (4.2). (The authors thank A. Kirillov Jr for supplying them the
proof.) We will identify g with g* via the invariant inner product. Let H be the maximal abelian
subgroup of G whose Lie algebra is fj. The space G/H is a homogeneous G-space. The tangent
space of G/H at H can be identified with h*, with inner product induced from the invariant;
from this we define a Riemannian metric on G/H. When x € § is regular, its stationary group
is isomorphic to the torus H. The map ¢ : G/H — G -z, defined by g — g -z with g € G, is
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a diffeomorphism. The tangent space of G -z at 2 can also be identified with the same h*
with the same inner product. It is easy to see that ¢ at H has derivative dpy = —ad(z) :
bt — ht. Let us calculate the determinant of dy. Because G/H is G-homogeneous and ¢
is G-equivariant, |det(dy)| is constant on G/H, hence |det(dp)| = | det(ad(x))|. To calculate
| det(ad(z))], it is easier to use the complexification of the adjoint representation, since ad(x) is
diagonal in the complexified representation. The complexified hZ has the standard Chevalley
basis Ey, Fy, o € @4 such that ad(z)E, = i(x, ) E, and ad(t)F, = —i(x, o) F,. It follows that
dg| = Toco, (@, ). Hence,
Vol(G - z) = Vol(G/H) [] I(z, ) = &D*(x),
acdf

where & = Vol(G/H)[],cq, |(p, )2 O
4.1.3. First proof of Proposition 3.5 in the case { =1

Geometric proof of Proposition 3.5 in the case { =1. We will prove that with ¢4 =
Gq/(4m)%+, for any g € Py(g*)? and f # 0,

£ (9) = (=2)%* c,& 7 (19+ D) Ty (9)). (4.3)

Assume that g = Zj g;h, where g; € S(g)?. It is enough to show (4.3) for each g = g;h’
since passing to the infinite sum 3 j g;h’ is possible due to the tameness of the series g.

Recall that g; € S(g)? is considered a function on g*; its restriction on h* is denoted by
P(g;). On the other hand, T4(g;) € U(g)?® defines a function on h*; see Subsection 2.1. From
diagram (2.2) and equation (2.3), we have that, as functions on h*,

Tq4(g;) = DP(g;)- (4.4)
By Lemma 4.1, the left-hand side of (4.3) with g = g; I/ can be expressed as

. 4 N T
LHS of (4.3) = &) (g;1) = if el /4g, ( ) da.
g J (47T)d1m g/2 o J \/Tfh
The integrand is invariant under the co-adjoint action. By Proposition 4.2, we have
éqh? 2 T
LHS of (4.3) = —%—— | D*(x)e "I*P(g)) | == ) da- 4.5
© ( ) (47T)d1mg/2 Jb* (l‘) e P(gj) /772]0}1 €z ( )

We turn to the right-hand side of (4.3). Using (4.4), one has, with g = g;17,
RHS of (4.3) = cgh? (—2fh)*+ £ (D*P(g)).

Again using Lemma 4.1, we have

gl (=2fh)%+ a2/ x x
RHS of (4.3) = W L* e ip? <\/W) g (m) dz. (4.6)

Because D? is a homogeneous polynomial of degree 2¢. , one has

20N b1 1y2 i
D (z) = (—2fh)*+D (\/Tfh>
With ¢g = &4/(4m)%+ and 2¢; = dim(g) — dim(h), from (4.5) and (4.6) we see that

LHS of (4.3) = RHS of (4.3).

This completes the first proof of Proposition 3.5 in the case ¢ = 1. ]

4.2. Second proof: algebraic approach

In this section, we present another proof of Proposition 3.5 in the case £ = 1.
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4.2.1. Harish-Chandra’s radial component formula and its applications. An invariant
function g € P(g*)? is totally determined by its restriction P(g) € P(h*)W. If O : P(g*) —
P(g*) is a differential operator with polynomial coefficients, then Harish-Chandra showed that
the map P(h*)"W — P(h*)" defined by P(g) — P(D(g)) is a differential operator, called the
radial component of O, and gave a description of the radial component for the case when
O is a g-invariant differential operator with constant coefficients; see [15, Chapter II]. This
description is called the radial component formula. Let us briefly recall this formula, when O
is the Laplacian.

The Laplacian Ag-«, originally acting on S(g), can be naturally extended to an action on
S(g) ® C = S5(g.), and we also denote this extended action by Agy-. Similarly, we extend the
action of Ay to S(hc). Let P be the restriction from g¢ to hz. Denote by 7 =]],cq, o
Then Harish-Chandra’s radial component formula, also known as Harish-Chandra’s restriction
formula, says that for any g € S(g, )%,

TP(Ag-(9)) = Ap+(7P(9))-

Actually, the above formula is obtained from Proposition 11.3.14 of Helgason’s book [15] by
identifying g. with g.* via the Killing form. Note that 7 is a constant times D, namely
T = DHaeq,Jr(j_la,p). Hence, by restricting Ay« to the real part, we get the following
proposition.

PROPOSITION 4.3. For any g € S(g)¥,
DP(Aq-(9)) = Ay-(DP(9))-
REMARK 3. We got Proposition 4.3 through the Harish-Chandra theorem, which is usually
formulated for the complexified g.. Actually, the real version, that is, Proposition 4.3, is simply
[15, Corollary I1.3.13], if one properly translates our notations to the ones in [15]. For another

discussion (and proof) of the real case, the reader is referred to [32]; see also [16, Theorem
2.1.8] for the U(n) case.

LEMMA 4.4. One has Ay-(D) = 0.

Proof. If g =1, then the left-hand side of the formula of Proposition 4.3 is 0, while the
right-hand side is Ay~ (D). Hence, Ay« (D) = 0. O

PROPOSITION 4.5. For any homogeneous polynomial g € S(g)? of degree 2d,

1
%A;ﬁ (9) = mAij (D*P(g)),

where cg = Aff (D?)/(¢+)! is a non-zero constant depending on g only.

Proof. Since Al (g) is a scalar, we have that
DAg.(9) = DP(Ag.(9)) = Af.(DP(g)),
where we obtain the second equality by applying Proposition 4.3 repeatedly. Hence,
co - 1A (9) = AJT (DAL (g) = AY (D?AG.(9)) = A (DAL (DP(g))),
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and the identity of Proposition 4.5 is reduced to

d+ oy
b+

Furthermore, by putting ¢’ = DP(g), the above equality is rewritten as

AT (Dy') = (d + ¢+) AP (DAL (4))- (4.7)
b+
It is sufficient to show (4.7).
By definition, Ay = >, 02 for an orthonormal basis {e;} of h. Let Z C P(h*) be the set
of all elements of the form O(D), where O € R[0,,,...,0,,]. Since O commutes with Ay«, by
Lemma 4.4 we have Ay-(x) = 0 for every z € Z. Hence, for x € Z and y € P(h*),

Ap-(zy) =2 Z e, (2)0e, (y) + 2Ap+(y)-

Let u:Z® P(h*) — P(h*) be the multiplication, p(z ® y) = zy. Then, the above formula
becomes

Ay (1(8)) = ul(O1 + O2)(B)]

for every f € Z ® P(h*), where O1 =23, 0., ® 0., and Oz = id ® Ay-. Note that O; and O,
commute, and (O + O2)(8) € Z ® P(h*). Applying the above formula repeatedly m times, we
get
m m—
AR u8) = (01 + 02" (3] = 3 ('} Jul0kOpHo) (4.9
k
Let 8 =D ® ¢'. From (4.8) we have
d+ ¢ _
Aoy = 3 (10 Julot e A )
k

Since deg(D) = ¢4 and deg(g’) = 2d + ¢, the only non-zero term in the right-hand side is the
one with k = ¢. Hence,

h* d
Let ¢” = A‘{f* (¢'), which has degree ¢,. We have

A+ (Dy) = (d ’ ‘“) WO (D ® AL ()] (4.9)

O+ 0 D) =% () or D e Ak o),
k

Again the degree restriction shows that the only non-zero term in the right-hand side is the
one with k£ = 0. Hence,

(01 +02)" (D& ") = O (D& g). (4.10)
Combining (4.9) and (4.10), we have

8y @g) = (1Y ulior + 09 0w o)

_ <d+¢+

S )a e,

where the second equality follows from (4.8). This completes the proof of (4.7). O
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4.2.2. Second proof of Proposition 3.5 in the case { = 1

Algebraic proof of Proposition 3.5 in the case £ = 1. Again we can assume that g € S(g)?.
We can further assume that ¢ is homogeneous. If the degree of g is odd, then both sides of
(3.4) are 0, and we are done. Assume now ¢ has degree 2d.

By definition, the left-hand side of (3.4) is

&(9) = exp (_2flhAg*> (9)

By expanding the exponential,

=0

d
1\%1 .,
Let us turn to the right-hand side of (3.4). Recall that D has degree ¢. By (4.4)

RHS of (3.4) = cg(~2fh)*+ & (D*P(g))

= co(21°" exp (~ 52 ) (D?Plg)

z=0

d+¢
= Cq(— [ons 1 1 d+oy 2
J(-27) ( ) : AL (D2P(g,))

2fh d+¢ )"
- <_1)d 1 AT (D*P(ga)). (4.12)
S\ 2fh) (d+¢p) 70

Comparing (4.11) and (4.12) by using Proposition 4.5, we have immediately
LHS of (3.4) = RHS of (3.4).
This completes the algebraic proof of Proposition 3.5 in the knot case. |

5. The link case

In Section 4, we discussed the proofs of Proposition 3.5 in the knot case. Here, in Subsection 5.1,
we discuss a proof of Proposition 3.5 in the general case. In Subsection 5.2, we also show that,
without Proposition 3.5 for the case ¢ > 1, one can still prove the main theorem using general
results on finite-type invariants.

5.1. Proof of Proposition 3.5 for arbitrary {

Proof of Proposition 3.5.  Using the tameness, we can assume that g € P(g*/)® = (S(g)®*)s.
The left-hand side of (3.4) is

¢
LHS of (34) = £ (9) = [ R " | (9).

j=1

Note that Séf) acts on P(h*). We define a modification of Eéf), which acts on the bigger space
P(g*) = S(g), as follows:

& (9) = ((-2/m)* cg) &7 (DY (). (5.1)
Then the right-hand side of (3.4) can be rewritten as

4
RHS of (3.4) = | Q& | (9).
j=1
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Identity (3.4) is then equivalent to

14

L
Q& | 0= Q& | ).

J=1 Jj=1

which is the case m = £ of the following identity,

1<i<m m<j<e j=1

We will prove (5.2) by induction on m. The case m = 0 is a tautology. Note also that when
¢ =1, the identity holds since we proved it in Section 4. We put

g/: ®gf])®®g(f7 ES()

1<j<m m<j<Ll
Then equality (5.2) becomes

&gy = V). (5.3)

Since Séfj) and ééfj) are intertwiners by Lemmas 5.1 and 5.2, ¢’ € S(g)®. Hence, (5.3) follows
from the case ¢ = 1, completing the induction. ]

LEmMMA 5.1. The map Eg(f) : S(g) — R[1/A] is an intertwiner with respect to the action
of g.

Proof. By definition, & (1) takes a monomial of odd degree in S(g) to 0. It is enough to
consider the case g = Y1Y5 ... Ys4, where each Y} is a linear form. Then & () takes YiY5... Yoy
to a constant multiple of

Z B(Y;1),Yr2) - - - B(Yr(2a-1), Yr(20))s
where the sum runs over all permutations on {1,2,...,2d} and B is the invariant inner product.

Since the invariant form B is an intertwiner, 52(1 is also an intertwiner.
Another proof is to use Lemma 4.1 to present Eéf ) by an integral:

(Digy— 1 —[al?/2 z
0 = g 0 ()

Since |z|* and dz are G-invariant, the right-hand side is G-invariant. O

LEMMA 5.2. The map géf) : S(g) — R[1/h] is an intertwiner with respect to the action
of g.

Proof. Since g acts trivially on R, it is sufficient to show that
£ (adx (9)) = 0
for X € g and g € S(g). Using the definition of géf) in (5.1), this is equivalent to

£ (DY (adx (9))) = 0.
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©

Y-graph-with-leaves Its neighborhood Surgery link

FIGURE 4. Y-graph, its neighborhood and surgery link.

It is enough to show that Yy(adx(g)) =0 as a function on h*. Evaluating Y(adx(g)) on
A € b* such that A — p is a real dominant weight, one has

T4(adx(g))(A) = Try,_, Tg(adx(g)) by definition
= Try, _,adx(Y4(g)) since Yq is an intertwiner
= Try,_,(XTg4(g9) — Tg(g)X) by definition of adx on U(g)
= 0. |

5.2. The link case through the knot case

Here we discuss another approach to the link case using general results on finite-type invariants.
We will prove that if two multiplicative finite-type invariants of rational homology 3-spheres
coincide on the set of rational homology 3-spheres obtained from S® by surgery along knots,
then they are equal.

Let H; be the set of all integral homology 3-spheres that can be obtained from S® by surgery
along knots with framing 41, and H{ the set of all finite connected sums of elements in H;.

5.2.1. Finite-type invariants of rational homology 3-spheres. We summarize here some
basic facts about finite-type invariants of rational homology 3-spheres (Ohtsuki, Goussarov—
Habiro, for details see [10, 11]).

Consider the standard Y-graph in R3; see Figure 4. A Y-graph C in M is the image of
an embedding of a small neighborhood of the standard Y-graph into M. Let L be the six-
component link in a small neighborhood of the standard Y-graph as shown in Figure 4, each
component having framing 0. The surgery of M along the image of the six-component link is
called a Y-surgery along C', denoted by M.

Matveev [28] proved that M and M’ are related by a finite sequence of Y-surgeries if and
only if there is an isomorphism from H;(M,Z) onto Hy(M’',Z) preserving the linking form
on the torsion group. For a 3-manifold M, let C(M) be the free R-module with basis all 3-
manifolds that have the same H; and linking form as M. Here R is a commutative ring with
unit. For example, C(S?) is the free R-module spanned by all integral homology 3-spheres. We
will always assume that 2 is invertible in R. Actually, for the application in this paper, it is
enough to consider the case when R is a field of characteristic 0.

Let E be a finite collection of disjoint Y-graphs in a 3-manifold N. Define

E'CE
Define F,,C(M) as R-submodule of C(M) spanned by all [NV, E] such that N is in C(M) and

|E| = n. Any invariant I of 3-manifolds in C(M) with values in an R-module A can be extended
linearly to an R-linear function I :C(M) — A. Such an invariant I is a finite-type invariant
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NS

FI1GURE 5. From Jacobi graph to Y -graphs.

of degree at most n, if I|z, , = 0. Matveev’s result shows that an invariant of degree 0 is a
constant invariant in each class C(M).
Goussarov and Habiro [11] showed that Fa,_1 = Fa,. There is a surjective map

W : Gr, A(0) — FonC(M)/Foni1C(M),

known as the universal weight map, defined as follows. Suppose that D € Gr,.A() is a Jacobi
graph of degree n. Embed D into S® arbitrarily. Then from the image of D construct a set E of
Y-graphs as in Figure 5. By definition, [M#S3, E| € F5,,C(M). A priori, [M#S3, E] depends
on the way D is embedded in S3. However,

W(D) := [M#S® E] (mod F,1C(M))

depends only on D as an element in A()). Moreover, the map W :Gr,A(0) —
FonC(M)/Faont1C(M), known as the universal weight, is surjective.

LEMMA 5.3. Suppose that D is connected. Then S3, can be obtained from S3 by surgery
along a knot with framing &1, and S3, € H;.

Proof. Choose a sublink E’ of E consisting of all components of E except for one component
K, and do surgery along this sublink. Using repeatedly, the move that removes a O-framing
trivial knot together with another knot piercing the trivial knot, it is easy to see that the
resulting manifold is still S2. Let K’ be the image of K in the resulting S®. Now one has
S3 = 5%, an integral homology 3-sphere. The framing of K’ must be 41 because the result
is an integral homology 3-sphere. |

If I is a finite-type invariant of degree at most 2n, then its nth weight is defined as the
composition

wgn) =ToW:Gr,A0) — V.

It is clear that if w§n) = 0, then I has degree at most 2n — 2.

5.2.2.  Multiplicative finite-type invariants and surgery on knots. The following result
shows that finite invariants are determined by their values on a smaller subset of the set of all
applicable 3-manifolds. Besides application to the proof of the LMO conjecture, the result is
also interesting by itself.

THEOREM 5.4. (a) Suppose that I is a finite-type invariant of integral homology 3-spheres
with values in an R-module A such that I(M) =1 for every M € HY. Then I(M) =1 for
every integral homology 3-sphere.
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(b) Suppose that I is a multiplicative finite-type invariant of rational homology 3-spheres
with values in an R-algebra A. If (M) = 1 for every M € H; and every lens space M = L(p, 1),
then I(M) = 1 for every rational homology 3-sphere. In particular, if I(M) = 1 for any rational
homology 3-sphere obtained from S* by surgery along knots, then I(M) =1 for any rational
homology 3-sphere.

Proof. (a) Suppose that I has degree at most 2n. Let D be a Jacobi diagram of degree
n. Suppose that D = H‘;Zl Dj. Let E; be the Y-graphs corresponding to D; as constructed
in Paragraph 5.2.1, and put £ =| [;_, E;. Since each of S%j is in H; by Lemma 5.3, S3 =

3?:15%1, is in HY.

Then

w;”(D) = I(|5°, B))
=1(5%) — 1(S%)
= 0 because Sy, € HP.

It follows that I is an invariant of degree at most 2n — 2. Induction then shows that I is an
invariant of degree 0, or just a constant invariant. Hence, I(M) = I(S®) = 1 for every integral
homology 3-sphere M.

(b) Suppose that I is a finite-type invariant of degree at most 2n, and D is a Jacobi diagram
of degree n. Let us restrict I on the class C(M). One has

w{" (D) = I(M#S°, E))
= I(M) — I(M#5%)
= I(M) — I(M)I(S%) because I is multiplicative
=0.

Hence, again T is an invariant of degree 0, or I is a constant invariant on every class C(M).
Since I(M) =1 for every lens space of the form L(p, 1), it follows that if a rational homology
sphere M belongs to C(N), where N is the connected sum of a finite number of lens spaces of
the form L(p,1), then I(M) = 1.
Ohtsuki’s lemma [29] says that, for every rational homology sphere M, there are lens spaces
L(p1,1), ..., L(ps, 1) such that the linking form of N = M#(#3_,L(p;, 1)) is the sum of the
linking forms of a finite number of lens spaces of the form L(p,1). Since I is multiplicative

I(N) = I(M) [T I(L(p;, 1).
j=1
With I(N) =1=I(L(p;, 1)), it follows that I(M) = 1. |
5.2.3.  Another proof of Theorem 1.1 in the link case

Proof of Theorem 1.1 in the link case. When R is a field of characteristic 0, the LMO
invariant is universal among finite-type invariants. This fact can be reformulated as W :
Grp A(0) — Fo,C(M)/Fan1C(M) is a bijection. This was proved for integral homology 3-
spheres by Le [23] and for general rational homology spheres by Habiro [11]. In particular,
this result says that the part of degree at most n of ZIMO g o (universal) finite-type invariant
of degree at most 2n.

Note that Wy (Z"™©) and 79 are multiplicative invariant with values in R[[%]]. By Proposi-
tion 6.1, the degree at most n part Tén of 79 is a finite-type invariant of degree at most 2n.

Let I = |H,|?+79/Wy(Z"MO). Then the part I, of degree at most n is an invariant of degree
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at most 2n. Clearly, I<,, is multiplicative. Moreover, I<,,(M) = 1 if M is obtained from S* by
surgery along knots by the knot case. Hence, by Theorem 5.4, I<, = 1. Since this holds true
for every n, one has I = 1, and hence, Wg(ZLMO) =79, ]

6. Presentations of the perturbative invariants

In this section, we discuss the perturbative invariant 7¢(M). In particular, we prove Proposi-
tion 3.4 and show that the degree n part of the perturbative invariant is a finite-type invariant
of degree at most2n. We also give an informal way to explain how one can arrive at the formula
of the perturbative invariant given by Proposition 3.4.

6.1. Perturbative expansion of a Gaussian integral

In this section, we explain how a Gaussian integral with a formal parameter in the exponent
can be understood in perturbative expansions. For the perturbative expansion of a Gaussian
integral, see also [3, Appendix].

Suppose that V is a finite-dimensional FEuclidean space, f is a non-zero integer, and R €
S(V) = P(V*). The Gaussian integral

I :J efh‘xlg/QR(x) dx

does not make sense if £ is a formal parameter. If / is a real number such that fh < 0, then
the integral converges absolutely, and one can calculate the integral as follows. A substitution

x =u/+/—2fh leads to

S SR <“)
! _(—2fh)““mv/2J & T

9 \ dimV/2
= (—fﬁ) 5éf)(R) by Lemma 4.1.
If i is a formal parameter, then the right-hand side still makes sense as an element in R[1/A].
Thus, we should declare

, 9 \ dimV/2
J * /M2 R(2) da = (_fh) &7 (R) (6.1)
for a formal parameter h. Note that if R € S(V)[[h]] is tame, then the right-hand side is in
R{[A]]-

6.2. Derivation of the perturbative invariants from the WRT invariant

First we review the 3-manifold WRT invariant; for details, see, for example, [25]. We again
assume that M is obtained from S® by surgery along an algebraically split link L with framing
f=0(f,-.., fe). Let Ly be the link L with all framings 0, and let T" be an algebraically string
link (with O-framing on each component) such that its closure is L.

For an (-tuple (Vi,—p,...,V,—,) of g-modules one can define the quantum link invariant
Q¥ V2 i=eVa—r (L) of the link Lo (see [33], we use here notation from the book [31]). This
invariant can be calculated through the Kontsevich invariant by results of Kassel [18] and Le
and Murakami [26]:

QB = V= (Lo) = (Z(T)AY (1)) (A1, ..., Ae). (6.2)
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In particular, when Lo = U, the unknot with framing 0, Q%Y*-»(U) is called the quantum
dimension of Vy_,, denoted by g-D()); its value is well known:

(A a)]
q'D(A) = H 9
i, (.0
where [n] := (e"/2 — e="1/2) /(el/? — ¢=1/2),
The quantum invariant of L differs from that of Ly by the framing factors, which will play
the role of the exponential function in the Gaussian integral:

(6.3)

4
QFVai-prVarn (L) = H eli NP =1pI)R/2 | Q8 Vas = Vi, (L), (6.4)

j=1

The normalization used in the definition of the WRT invariant is
¢
FL(A]J"'?AZ) = Hq_D()\]> va}qimm?v}\eip(l’)'
=1

Using (6.2) and (6.4), one can show that

Fr(A, ..o ) = (e Za alo 12y (X5 SN2 RN 0 Ay)), (6.5)
where R = D®Y(Q%(T)) = F,.
Suppose that e” is a complex root of unity of order r. Then, Fr()y,..., ;) is a polynomial

in e and is component-wise invariant under the translation by 7« for any a in the root lattice;
see [24]. Let D, C h* be any fundamental domain of the translations by r« with « in the root
lattice. Then, with e” an rth root of 1,

I(L):= > Fr(h,...,\) (6.6)
Aj€Dr

is invariant under the handle slide move. A standard normalization of I(L) gives us an invariant
of 3-manifolds, which is the WRT invariant.

Because of the translational invariance of Fy,, we could define the WRT invariant if we replace
D, by ND, in (6.6), where N is any positive integer. When we let N — oo, we should sum
over all the weight lattice in (6.6) which does not converge. Instead, we use integral over h*,
that is, instead of I(L) we consider the integral

J CFL(hs. M) dAr . dAe,
()¢

which might not make sense in a usual sense. However, using Fp(A1,...,A¢) in (6.5), the
integral has the form of a Gaussian integral discussed in the previous section. According to
(6.1), the above integral should be a constant multiple of the following modification of I(L):

¢
fp2 .
LT, f) = | [[ e P12 ) &80 (h#+ D) 1 (Q2(1))),
j=1
which leads to the formula in Proposition 3.5.

6.3. Proof of Proposition 3.4

First we review Le’s formula of 79; for details, see [25]. As noted in the previous section, as
functions on h*¢,

Fr, = DT (Q%(T)).
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Let OY) . P(h*) = S(h) — R[1/h] be the unique linear operator defined by
0 if k£ is odd,

() (gk) —
O = e~I1PI*h/2 (24 — 1)1 (-Wf'Q)dh—d if k=2d,

(6.7)

for 3 € h. We also define its multi-linear extension
¢
o) . p,(p*") — R[[H]], OW) .= ®O(fj).
j=1

Let
L(T, f) = O (04 Fr,) = OD((h*+D)¥ Y (Q8(T))).

Then, as in [25], the perturbative invariant 7¢(M) is given by

Tg(M): - Ié(Taf) )

Hj:l I5(1, sign(f;))

To prove Proposition 3.4, one needs only to show that Io(T'; f) = I5(T; f). It is enough to
show that

o (g) = e—flpl2h/2géf)(g) (6.8)

for every g € S(b). Since both operators O/) and 5éf ) are linear and W-invariant, it is sufficient
to consider the case when g = 2%, where x; is the first vector of an orthonormal basis z1, ..., z,
of h. In this case Ay = > 6%1_, and one can easily calculate Eéf)(x’f):

A A
€g(f)($lf) = exp (—2;”71) (331f)|wj:0 = Z m(flf)
— d!
0 if k£ is odd,

d
(2d — 1) (—}) =4 if k = 2d,

which is precisely the right-hand side of (6.7) without the factor e~/1°I"%/2 (with 8 = z). This
proves (6.8).

6.4. The coefficients of 79 are of finite type

PROPOSITION 6.1. The degree n part of the perturbative invariant 79 is a finite-type
invariant of degree at most 2n.

REMARK 4. The proposition is a consequence of the main theorem. However, we used this
proposition in the alternative proof of the main theorem in Subsection 5.2. This is why we give
here a proof of the proposition independently of the main theorem.

Proof. Let M be a rational homology 3-sphere and E a collection of 2n + 1 disjoint Y-
graphs in M. We only need to prove that 79([M, E]) € i1 Q[[A]].

By taking the connecting sum with lens spaces, we assume that the pair (M, E) can be
obtained from (53, E) by surgery along an algebraically split link L C S3. By adding trivial
knots with framing +1 (which are unlinked with L) to L if needed, we can assume that the
leaves of E € S® form a trivial link. Let Lo be the link L with O-framing, and choose a string
link T in a cube such that Lg is the closure of T. We can assume that F is also in the cube.
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For a sub-collection E’ C E, let Lg: be the link obtained by surgery of S along E’ (see [10,
11]). We define similarly (Lg)g and Tps. Clearly, (Lo) g is the closure of Tg/. For every link
L and every Y-graph C whose leaves form a 0-framing trivial link, the move from L to L¢ is
a repetition of the Borromeo move (see [10, 11]):

o N
MY

Hence, by Le [23, Lemma 5.3, Z(T — T¢) has i-degree at least 1. Here x € A(U* |) has i-degree
at least k if it is a linear combination of Jacobi diagrams with at least k trivalent vertices. It
follows that Z([T, E]) has i-degree at least 2n + 1, where [T, F] := ZE/CE(*l)lE,‘TE’- Note
that all the links Lg/, E' C E are algebraically split, having the same number of components,
and having the same framings f = (fi,..., f¢). By definition, one has

M E] = Y (-1,

E'CE

Hence,

(M E]) = Y (~1)F 18 ((8%)L,,)

E'CE

_ _)E I(Tg, f)

E/Zc:E( : Hﬁ:lIQ(lvsign(fj))
L([T.E], f)

T, R(Lsign(f)
¢ e tilelP 2yl (per YL 7
(e ; )y (('h¢ D)WZ([T,E])). (6.9)
Hj:1[2(la81gn(fj))

By Lemma 6.2, since Z([T, E]) has i-degree at least 2n -+ 1, the numerator of (6.9) belongs to
R"*1R[[A]], while the denominator is invertible in R[[R]]. It follows that the right-hand side of
(6.9) belongs to A" R[[A]]. O

LEMMA 6.2. (a) IfD € A(U |) is a Jacobi diagram having at least 2n + 1 trivalent vertices,
then &7 ((h?+D)®*W,(D)) € i+ R[[A]].

(b) The lowest degree of h in I»(|,£1) € R[[A]] is 0, that is, Is(],+1) is invertible.

Proof. (a) Suppose that D has degree d. Then D has 2d vertices, among which 2d —
2n — 1 are univalent. It follows that Wy(D), as an element of U(g)®?, has degree at most
(2d —2n — 1) and, as a function on (h*)*, is a polynomial of degree at most f¢, + (2d —
2n — 1); see [25]. Hence, the degree of D®‘Wy(D) is at most 20¢; + 2d — 2n — 1. Recall
that é}(}f ) (g) decreases the degree of /i by at most half the degree of g. The degree of & in
&7 (DEW(D)) = hd(?é” (DEW,(D)) is at least d — 2(20¢, +2d—2n—1) = $ +n — (4.
Hence, &7 ((1#+D)®Wy(D)) € k" R][H]).

(b) By definition

Iy(1,%1) = eFIPPR2ED (0 DY (Z(1)).
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For the trivial knot, everything can be calculated explicitly. One has DW,(Z(])) = (¢D)?, and
using (6.3) one can easily show that

DIV, (2(1)) = D (1 . zgm%) |
k=1

where g; has degree exactly 2k. Thus,

2L (1) = B0 £ (D) + ) (Z gkﬁhzk) |
k=1

Since deg(gx) = 2k and deg(D?) = 2¢., the second term belongs to AR[[A]], while the first term
is

¢ 2
hmg(ﬂ)(D)Q _ AyT(D?) _ G
" (6)!(F2)%+  (¥2)%+
Since ¢y # 0, we conclude that I(|, 1) is invertible in R[[A]]. O

Appendix. Elements of U(g) as polynomial functions on h*
Let Tr(g, Va—,) be the trace of the action of g on the g.-module V)_,.

PROPOSITION A.1. (a) For every g € U(g,.), there exists a unique polynomial function p,
on b, such that for every dominant real weight A — p,

Tr(g, kap) = ng‘)'

Moreover, p, is divisible by D, and the polynomial function vg4(g) := py/D is W-invariant. If
g Is central, then 14(g) coincides with the one defined in diagram (2.2).

(b) If g € U(g), then p, is real, that is, p; € P(b*).

Proof. (a) If g is central, then the statement is [36, Theorem XVIL.7]. For the general case,
we use the decomposition of U(g,.) into g-module:

Ulg.) =U(go)* o U, (A1)

where U’ = ady_ U(g.) = {7y —yx | 2,y € U(g.)} (see [17, Exercise 23.7]). For g € U(g,), let
¢ and ¢” be the projections of g onto the first and the second components of (A.1). Since g”
is a commutator, its trace on any module is 0. Hence, we have Tr(g,V) = Tr(¢’, V) for any
g.-module V', and we can define p; = py.

(b) has been proved at the end of Subsection 2.3, using the commutativity of the complexified
version of diagram (2.2). O
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