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LOCAL RULES FOR QUASIPERIODIC TILINGS

THANG T. Q. LE

Department of Mathematics
SUNY at Buffalo,
Buffalo, NY 14214, USA

Abstract We discuss local rules theory for quasiperiodic tilings. Two versions
of local rules, with or without decorations, are distinguished. Weak local rules
are also considered. For the classes of tilings obtained by the canonical projection
method, we present necessary conditions and sufficient conditions for the existence
of local rules. Every set of quasiperiodic tilings obtained from the canonical strip
projection method and based on quadratic irrationalities always admits local rules
after decoration. In many cases there exist local rules without decoration. Exam-
ples of pentagonal tilings and 2-dimensional quasiperiodic tilings, obtained by the
projection method from 4-dimensional space, are considered in detail. We prove
that the existence of {even weak) local rules without decoration implies that the
projection plane is based on algebraic irrationalities. The topology of sets of tilings
obtained by projection methods is described.

1. Introduction

The aim of the paper is to give a survey of recent results on the theory of
local rules for quasiperiodic tilings obtained by the projection method.

One of the most interesting problems in tiling theory is to find sets of
building blocks, say polyhedra, and rules which state which building block
can be put next to another one, such that every tiling obeying these rules
is aperiodic and/or quasi-periodic in some sense.

For example, consider two “arrowed” rhombi in Figure 1 (in Section 2)
as building blocks. The acute angles of these rhombi are 7 /5 and 27/5, and
their edges have the same length. The rule is that only edges with the same
kind of arrows can be matched. There are uncountably many tilings of the
plane obeying this rule; every such tiling is aperiodic in the sense that it
is different from every nontrivial translate of itself. Moreover these tilings
are quasi-periodic in a sense that will be explained later. These tilings are
known as Penrose tilings (Penrose, 1978; de Bruijn, 1981).
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332 THANG T. Q. LE

A general form of this rule will be called a local rule; some authors call
“matching rule” or “local matching rule”. A “local rule”, in some sense,
contains information in a local finite radius. It is far from trivial to decide
when a local rule forces a tiling to be aperiodic, or quasiperiodic, since the
latter are global properties.

The first local rule enforcing aperiodicity was found in (Berger, 1966),
but it contains too many building blocks, and the tilings are just the infinite
checker board with some decoration. The best known example is the above
mentioned Penrose local rule. Until recently there were known only a few
local rules which force quasiperiodicity. We will present here infinitely many
such local rules.

We can begin with a set of aperiodic tilings and ask whether this set
of tilings admits a local rule, i.e., if there is a local rule such that this set
of tilings is exactly the set of tilings obeying the local rule. This question
also has importance for physics. It seems that only sets of tilings with local
rules can serve as model for the real quasicrystals discovered in 1984.

There are two methods for generating aperiodic (quasiperiodic) tilings:
the substitution method (see, for example, (Griimbaum and Shephard,
1987; Senechal, 1995; Danzer, 1991)) and the projection method (and its
modifications, see (de Bruijn, 1981; Kramer and Neri, 1984; Kramer and
Schlottmann, 1989; Oguey et al., 1988; Gihler and Rhyner, 1986)). Tilings
obtained by the projection method seem closer to periodic tilings. Tilings
obtained by the substitution method may have more exotic structures. The
Penrose tilings can be obtained by either method.

The main question of this paper is when a set of tilings obtained by
the canonical projection method admits a local rule (see Section 3). This
question has been investigated in many special cases, see, for example,
(Baake et al., 1990; Burkov, 1988; Danzer, 1989; Ingersent, 1991; Katz,
1988; Klitzing et al., 1993; Socolar, 1989; Socolar, 1990). We will give a
survey of known necessary and sufficient conditions for the existence of
local rules. Among other things, we prove that a necessary condition is
that the projection plane must be based on algebraic irrationality. We also
describe in detail the topology of sets of tilings obtained by the projection
method.

For local rules for tilings obtained by substitution methods, see (Danzer,
1991; Radin, 1994; Senechal, 1995). There are several sets of tilings ob-
tained from noncanonical projection methods and admitting local rules,
see ( Baake et al., 1990, 1991; Danzer et al., 1993; Klitzing et al., 1993;
Klitzing and Baake, 1994).

We will distinguish between two types of local rules, one without deco-
ration, and one with decoration. The first type is stronger than the second,
and local rules of the first type are much rarer that the second. There are
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many sets of tilings which admit local rules of the second type but do not
admit any local rules of the first type.

We will introduce basic definitions about local rules and mutual local
derivability in Section 2, together with examples of Penrose and Ammann
local rules which illustrate the difference between the two types of local
rule.

In Section 3 we will first recall the projection method and its equivalent
form, the canonical cut method, following (Oguey et al., 1988). Then we
describe in detail the space of these tilings and its topology, and formulate
a simple criterion when two sets of tilings are mutually locally derivable.

Important results concerning local rules are surveyed in Sections 4-7.

In Section 4, we review known necessary and sufficient conditions for
the existence of local rules (both types) for the sets of pentagonal tilings,
or generalized Penrose tilings; including a candidate for local rules for the
set of all pentagonal tilings. The ideas of the proofs are discussed.

In Section 5 two general sufficient conditions for the existence of local
rules after decoration are given. This provides infinitely many local rules,
enforcing quasi-periodicity, in any dimension greater than 1, and includes
all previously known local rules (for canonical projection tilings). These
local rules always select tilings in a single local tsomorphism class (see
Section 3.3).

In Section 6 we present Levitov’s SI condition as a necessary condi-
tion for the existence of a local rule without decoration, and formulate a
much stronger necessary condition about algebraicity, which is proved in
Section 8.

In Section 7 we give necessary and sufficient conditions for the existence
of local rules without decoration for the case when the superspace has di-
mension 4. The results are much fuller than in higher dimensional cases. An
infinite series of sets of tilings, previously unknown, admitting local rules
without decoration is given.

In Section 8 we give a proof of the fact that if the set of tilings obtained
by the projection method admits a local rule without decoration, or even a
weak local rule, then the projection plane must have algebraic slope. The
proof is based on Tarski’s theory of real algebras. Other related notions,
weak local rules and r-volumes, are also discussed.

2. Definitions and preliminary facts

For the purpose of this paper, many definitions have stricter meaning than
generally accepted.

A decorated polyhedron is a pair (P, j) where P is a polyhedron in a
Euclidean space, and j is an arbitrary element, called the decoration of this
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polyhedron. Two decorated polyhedra are congruent if their decorations
are the same and the second is an image of the first under an isometry
of the Euclidean space. Two decorated polyhedra are t-congruent if their
decorations are the same and the second is a translate of the first. We
always distinguish between two congruent polyhedra.

A tiling of R* is a family of k-dimensional polyhedra which covers R*
without overlaps such that up congruence there are only a finite number of
polyhedra in this family. A polyhedron of this family is called a tile. A tiling
is face-to-face if the intersection of every two polyhedra is a common facet
of lower dimension, if not empty. In this paper tilings are always assumed
to be face-to-face unless otherwise stated.

A decorated tiling is a tiling whose tiles are decorated polyhedra such
that up to congruence there are only a finite number of tiles. A nondecorated
(or plain) tiling can be regarded as the decorated tiling with exactly one
decoration.

Definition 2.1 An r-map is an arbitrary collection of decorated polyhe-
dra intersecting a ball of radius v, where r > 0 is a real number.

Two r-maps are t-congruent if the second is a translate of the first and
the corresponding decorations of polyhedra are the same. We are interested
only in r-maps whose polyhedra fit together and cover the r-ball.

Let T be a decorated tiling and v a vertex of 7. The r-map of T at v is
the collection of decorated tiles of T' intersecting the ball centered at v and
of radius r. An r-map of T means any r-map of T' at some vertex.

For example, a 0-map of a tiling T at a vertex v is the collection of tiles
incident to this vertex. A 0-map is also called a vertex configuration.

Now we can introduce the main definition:

Definition 2.2 (Levitov, 1988) An r-rule is any finite set A of deco-
rated r-maps. A decorated tiling T satisfies the r-rule A if every r-map of
T is t-congruent to an r-map in A.

Remark 2.1 For the tilings in this paper, it is more convenient to con-
sider ¢-congruence instead of the usual congruence.

A facet-configuration is a collection of two decorated polyhedra, of the
same dimension sharing a common facet of codimension 1.

Definition 2.3 A facet-rule is a finite set of facet-configurations. A tiling
T satisfies a facet-rule A if every facet-configuration of T' is t-congruent to
a facet-configuration in A.

We are interested in 7-rules such that every tiling satisfying this r-rule
is quasi-periodic in some sense.
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Definition 2.4 A set T of decorated tilings admits a local rule if there :
is an r-rule such that T is ezactly the set of all decorated tilings satisfying 1
this r-rule.

A set T of decorated tilings admits a strict local rule if there is a facet-
rule such that T is the set of all tilings satisfying this facet-rule.

Recall that the case with “plain” tilings corresponds to the case when
there is only one kind of decoration.

Certainly if a set admits a strict local rule, then it admits a local rule.

An interesting question in tiling theory is: when does a given set of (dec-
orated) tilings admit a local rule? Usually this set of tilings is constructed
by some method, say a substitution method (cf. (Gritmbaum and Shephard,
1987)) or a projection method.

We can reformulate the question as follows. Let 7(r) be the set of all
tilings every r-map of which is t-congruent to an r-map of a tiling in 7.
Then 7 admits a local rule if and only if there is some r such that 7 = T (r).

Obviously 7(r') C T(r) if v’ > r, and every T (r) contains 7. Hence

T := n T(r)

reR,r>0

contains 7. We call 7 the closure of T. .
If 7 admits a local rule, then it is closed, ie., T = 7.

2.1. TWO EXAMPLES

1. THE PENROSE TILINGS: The best known examples of quasiperiodic
tilings are the Penrose tilings (cf. Penrose, 1978; de Bruijn, 1981).

(a) Decorated Penrose tilings. Let us consider the two decorated rhombi
in Figure 1. The acute angles of the rhombi are 7/5 and 2x/5. The sides

NN
>>
L.
/ /“/
s S
Cd Cdl

Figure 1. Building blocks of Penrose tilings

have length 1, and are equipped with single or double arrows; this informa-
tion can be easily converted into the decoration of the rhombi.
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Let A be the facet-rule consisting of all facet-configurations; each is
formed by 2 copies such that arrows on the common edge are the same.
Here a copy is an image of one of the two decorated rhombi by a translation
and a rotation by mn/5,m € Z.

A tiling satisfying this facet-rule is called a Penrose tiling. It is a non-
trivial fact that the set of Penrose tilings has uncountably many elements
which are pairwise noncongruent, see (Penrose, 1978). Every Penrose tiling
is aperiodic and quasiperiodic in a sense which is explained later. Penrose
tilings can be obtained by a substitution method (de Bruijn, 1981)

.

(b) Plain Penrose tilings. A plain Penrose tiling is a nondecorated
tiling obtained from a Penrose tiling by ignoring the decoration (i.e., erasing
the arrows). It is known that the set of plain Penrose tilings admits a local
rule of radius 2, see (Senechal, 1995). Actually, every tiling, whose 2-maps
are t-congruent to those of plain Penrose tilings, can be decorated by arrows
so that the resulting decorated tilings satisfying the facet-rule described
above.

Plain Penrose tilings can be obtained by the canonical projection meth-
od (de Bruijn, see below). Every plain Penrose tiling can be decorated in
exactly one way to become a Penrose tiling.

2. AMMANN OCTAGONAL TILINGS: These are analogs of Penrose tilings.

(a) Decorated Ammann tilings. Consider the decorated rhombus and
the decorated square in Figure 2; the acute angle of the rhombus is /4,
and sides of the rhombus and the square have length 1.

The Key: ’

Figure 2. Building blocks of the Ammann tilings and the key

Consider the local rule consisting of 0-maps (vertex configurations)
which can be formed by copies of the decorated rhombi and squares with
the following constraints: matching at edges and matching at vertices. Here
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a copy is an image of the decorated rhombus or square under a combi-
nation of translations, mirror reflection with respect to a horizontal line,
and rotations by 7 /4; matching at an edge means the arrows are the same;
matching at a vertex means the marking at the vertex must form the key.
An Ammean tiling is any tiling satisfying this O-rule.
There are uncountably many pairwise noncongruent Ammann tilings,
see (Ammann et al., 1992). All of them are aperiodic and quasi-periodic.

(b) Plain Ammann tilings. A plain Ammann tiling is a nondecorated
tiling obtained from an Ammann tiling by ignoring the decoration. These
tilings were studied in (Beenker, 1982; Burkov, 1988; Le, 1993; Socolar,
1989).

It is known that the set of all plain Ammann tilings does not admit any
local rule, see (Burkov, 1988). Plain Ammann tilings can be obtained by
the projection method (see below).

An extremely interesting fact is that there are two different Ammann
tilings which are the same if the decorations are ignored; in fact, there
are infinitely many such pairs. Hence some plain Ammann tilings can be
decorated in many different ways (in fact 1, 2, 4 or 8 different ways, see
(Le, 1993)); and the set of plain Ammann tilings which can be decorated
in more than 1 way is of measure 0.

This is very different from the Penrose case: every plain Penrose tiling
can be decorated in exactly one way.

2.2. LOCAL RULES AFTER DECORATING

Many tilings constructed by geometrical methods are not decorated, and
since a “decorated local” rule in some sense is more powerful than a non-
decorated one, we introduce the following:

Definition 2.5 Suppose T is a set of nondecorated tilings. We say that
T admits a local rule after decoration if there is a set T¢ of decorated
tilings which admits a local rule such that when ignoring the decorations,
the two sets T and T¢ are coincident,

Note that there may be two different tilings in 7° which are the same
if we ignore the decorations.

For example, as noted above, the set of plain Ammann tilings admits a
local rule after decoration; but it does not admit any local rule!

Some authors do not distinguish between local rules and local rules after
decoration, and the existence of a local rule after decoration is sometimes
considered as the existence of local rules.

The existence of a local rule for a set of plain tilings is a much rarer
phenomenon than the existence of a local rule after decoration.
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2.3. TOPOLOGICAL EQUIVALENCE, MUTUAL LOCAL DERIVABILITY

Let T be a set of decorated tilings of R¥, with a fixed origin. Suppose 7 is
invariant under translations. Consider the following topology on 7.

For a positive number r and a tiling T in 7, let Vi) be the set of
tilings 7" € 7 such that there exists a vector o whose length is less than
1/r with the property: two tilings T and T” + « are the same inside the ball
of radius 7 centered at the origin.

Considering V{y,r), for r > 0, as a basis of neighborhoods of T, we get
a topology on 7. In fact, this is the topology considered in (Radin, 1991;
Robinson, 1992), adapted to the case of decorated tilings.

The group R* acts on 7 by translations, and (7", R¥) is considered as a
dynamical system. Two sets of decorated tilings 7, 7" of R* are topologi-
cally conjugate if there is a homeomorphism between them which respects
the action of R*.

Suppose that there are invariant measures on 7 and 7”. We say that
T and 7’ are metrically conjugate if there is a homeomorphism between
aset U C T and a set U’ C T’ which respects the action of R¥, where the
complements 7 \ U and 7" \ U’ have measure 0.

Another equivalence relation between sets of tilings is the following.
Suppose that there is a fixed r > 0 and a t-congruence-equivariant mapping

[+ { r-maps of tilings in 7} — {tiles of tilings in 7'}

such that if T is a tiling in 7', then the images of all r-maps of T fit together
to form a tiling in 7. In that case we say that 7" is locally derivable from
T, (Baake et al., 1991).

If two sets of tilings are locally derivable from each other, we say that
they are mutually locally derivable, or they belong to the same mutual
local derivability class (or MLD class, in short).

Example 2.1 The set of Penrose tilings and the set of plain Penrose
tilings are locally derivable. The set of Ammann tilings and the set of plain
Ammann tilings are not mutually locally derivable.

Theorem 2.6 Consider the following statements:

(8) T and T’ are mutually locally derivable.

(b) T and T' are topologically conjugate.

(¢) T admits a local rule if and only if T' admits a local rule.

Then (a) = (b) = (c).

So, admitting a local rule is a property of the whole MLD class.
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The implication (a) = (c) is easy, and has already been shown, see
(Baake et al., 1991). The part (a) = (b) is also easy, but the part (b) =
(c) is more difficult. For a proof, see (Le, 1995¢c). We conjecture that (a) is
equivalent to (b).

3. The strip projection method and the cut method

There are many criticisms of these methods, mainly because the “super-
space” does not have an adequate physical interpretation. But still, tilings
obtained by these methods form an important class of quasiperiodic tilings.

While there is no widely accepted definition of quasi-periodicity, all
tilings obtained by these methods are quasiperiodic by all known definitions.
The well-known Penrose and Ammann tilings are in this class of tilings.

The question about existence of local rules for these tilings has not been
answered fully, and is far from trivial.

We recall here briefly the strip projection method and the cut method.
The cut method has been known for a long time, see (Kramer and Neri,
1984). Its main idea is to obtain quasiperiodic structures by using a sec-
tion of a periodic structure in higher dimensional space. A mathematical
foundation is presented in (Oguey et al., 1988), and we follow this paper.
A general method for generating tilings as section of periodic structure
in higher dimensional space is given in (Kramer and Schlottmann, 1989).
What we are discussing in the next subsections is known as the canonical
projection (or cut) method.

3.1. THE STRIP PROJECTION METHOD

In the Euclidean space R" with origin 0 we fix a standard basis e;,..., €,.
Let Z" be the integer lattice. For vectors a;, ..., a;, in R™, the set

zon(Quy, ..y Q) = {i: Ao | A €0, 1]}

i=1

is called the zonotope generated by ay,... ,an. The set v = zon(ey, ..., €,)
is the unit cube.

For a multi-index I = (iy,...,4) with 1 <4y < ip+-- < iy < n, the set
zon(e;,, ... ,e;, ) and its translates by vectors from Z" are called ¢-facets of
the lattice Z". A O-facet of Z", by definition, is any point in Z™.

Suppose E is a k-dimensional subspace in R". Let E+ be its orthogonal
complement. Then R* = E @ E*. Denote by p and p*, respectively, the
corresponding projections onto E and E+. Let

el =p(e;) and ef =p'(e).
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‘We assume that F satisfies:

BEvery set of k vectors from ey, i=1,...,n (3.1)
is linearly independent. )

FE is considered as a point in the Grassmannian Gy, which is a smooth
algebraic subvariety of a projective space. It is easy to see that the set of
all k-dimensional subspaces not satisfying (3.1) is a closed subvariety of
Gy, Hence the set of all k-dimensional subspaces satisfying (3.1) is open
and dense (even in the Zariski topology) in Gy .

Condition (3.1) is not essential, but without it one needs to make mod-
ifications to many statements and proofs bellow. For a way to deal with it,
see the remark in Section 8.7. The condition is equivalent to the following;
every n — k vectors from e;,i = 1,...,n are linearly independent.

For every a in R™ consider the tube 7 + E + o obtained by shifting the
unit cube v along an affine plane parallel to E. A point o is E-regular if
the boundary of the tube v + E + a does not contain any integer point.

Theorem 3.1 (cf. Oguey et al., 1988) Suppose o is E-reqular. Then
the union of all k-facets of Z" lying inside the tube Y+ E+q is a continuous
k-dimensional surface. This surface projects (along E*) homeomorphically

onto E and contains all g-facets of Z™ falling inside the tube v+ E + o, for
0<g<k

The surface in the theorem has an obvious polyhedral structure. By
projecting this polyhedral structure along E' onto E we get a tiling T,, of
E. The tiles of T,, are the projections of k-dimensional facets of the lattice
Z"™; and there are (7:) of them, up to translations.

It’s enough to consider shift vectors e in E+. A point o € E* is irregular
if it is not regular. Denote Ir the set of all irregular points. This set is of
measure ( and plays a fundamental role (see Section 3.5).

Let Tg be the set of all tilings T,,, with regular ¢, and their translates.
One would like to know whether 7z admits a local rule. Unfortunately Tg
is never closed unless F is rational (i.e., spanned by vectors with rational
coordinates), in which case the tilings are periodic. So the question should
be formulated as follows: when does the closure 7z admit a local rule?

Tilings in Tg are called quasiperiodic tilings associated with E.

We will say that E admits a local rule, if 7z admits a local rule.

3.2. THE CANONICAL CUT METHOD

Let’s consider another construction for the same tilings, known as the cut
method.
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Again F is a k-dimensional subspace of R™. A set X in R is called an
E-prism (or simply prism) if

X =p(X) +p*(X).

If X is a prism then the intersection of X with a k-plane E + « for a € R",
if not empty, is always ¢t-congruent to the base p(X).

We first construct a periodic tiling of R® consisting of prisms. There is
a standard way to construct such tiling.

For each I = (’il,...,ik) withl<i <. < i < n, let

Cr=P; + PI'L,
where P; is the zonotope generated by

p(eix)’ o ’p(e'ik)’
Py is the zonotope generated by

“pl(ajz)’ ceey "'pl (Ejn—k)'
Here
i} U ooy dnk} = {1,2,...,n}.
(The minus signs are very important.)
Proposition 3.2 (cf. Oguey et al.,1988) The family
O={Cr+¢¢Eezr)

is a tiling of R™ which is not face-to-face.

Two important properties of @ are

(a) it is periodic: O is invariant under action of Z*, and

(b) its tiles are E-prisms.
For a prism X we define

INX) = p(X) +d(p*(X)),
0+(X) = d(p(X)) + p*(X,

where 9Y is the boundary of the set Y in E or in E. The sets §! (X) and
0*+(X) are called respectively the parallel and the perpendicular boundaries
of prism X. :

Denote by B! the union of parallel boundaries of all prisms in ©. If o
is a point of R™ such that E + o does not meet B' then the intersections of
the k-plane E + « with all members of @ form a tiling of E+ « and hence a
tiling of E by projecting onto E. The reason why we have to choose regular
« is that when « is not regular, all the intersections of o + E with tiles of
O cover E + o with overlaps. The equivalence between the cut method and
the projection method is now stated as follows.
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Theorem 3.3 (Oguey et al., 1988) The point « € R" is regular if and
only if E + a does not meet the parallel boundary B!, If a is reqular then
the intersections of E + a with prisms in O define a tiling on E + o and
by projecting onto E we get exactly the tiling T, obtained by the projection
method.

It follows that the set Ir of irregular points in E' is p* (B").

3.3. SUBSETS OF 7%, SINGLE LI CLASSES

Definition 3.4 Tuwo tilings belongs to the same local isomorphism class
(or LI class) if every r-map of the first is t-congruent to an r-map of the
second and vice-versa, for every r > 0.

In general, the tilings in 7z do not all belong to the same LI class.
Let Z(E) be the smallest rational subspace (i.e., a subspace that can
be spanned by vectors with rational coordinates) containing E. Then

A(E) = Z(E)* =R"/Z(E)

is a rational subspace. Note that A(E) is the maximal rational subspace of
EL.

Proposition 3.5 If o,0 are regular and o — (3 belongs to Z(E) then T,
and Ty belong to the same LI class.

This is a convenient reformulation of Proposition 1 in (Levitov, 1988)).

For t € A(E) denote by Tg, the set of all tilings T, with regular « in
t+ Z(E). By this Proposition, every two tilings in 7%, belong to the same
LI class. The closure 7g; is a single LI class, i.e., every two tilings in it
belong to the same LI class, and if T is a tiling belonging to the same LI
class as a tiling in Zg,, then T is in Tg,.

Although T = UTgy, in general, Ty is bigger than UTg;. When E+ N
Z" =0, Tz is a single LI class.

3.4. EQUIVALENCE

The main question is, when does 7g, or Tg,;, admit local rules (after decora-
tion)? Since the property of admitting a local rule is a property of a mutual
local derivability class, first we would like to know when two sets 7z and
Tr, corresponding to two different k-dimensional subspaces, are mutually
locally derivable.

Theorem 3.6 (1) Let E and F be two k-dimensional subspaces. The
following are equivalent.

(a) Two sets of tilings Tz and Ty are mutually locally derivable.
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(b) Tz and Tz are topologically conjugate.

(c) There is a nondegenerate linear mapping from E* to F* transforming
Ir E to Ir P

(2) Suppose that t,t' € A(E). Then two sets T and Ty are mutually
locally derivable if and only if there is a nondegenerate linear mapping from
E*N(t+ Z(E)) to B* N (¢ + Z(E)) which transforms Ir N (t+ Z(E)) to
IrN (' + Z(E)). (Compare Baake et al., 1991.)

That (a) is equivalent to (b) can be proved using the topology of Tx
described in the next section. The other statements are more difficult.

3.5. IRREGULAR POINTS, TILINGS IN 7f — Tg

As noted above, the set Ir of irregular points in £+ isp' (B). For
J = (G- e s Jn-k=1), I1<ii<fa<++ <jpog-1 <,

let h; be the (n — k —~ 1)-plane spanned by

L L
ejl,co- ’ejﬂ—k—l'

It is of codimension 1 in E+. Then Ir is exactly the union of (n—% _ 1)
families of parallel (n — k — 1)-planes, each of the form

hJ + pl (Zn)}

see (Oguey et al., 1988). Each family is dense in EX but the union of its
members has measure 0.

We now describe the tilings in 7z which are not in 1.

If o € E* is irregular, then there are several hyperplanes in Ir passing
through a; they divide E* into many parts. By a ~crner at o we mean one
of these parts, without points on the boundary (i.e., each corner is an open
subset of E). For a regular a, the whole E* will be considered as the only
corner at a.

For a pair (a,z) where a € EL and z is a corner at «, let us consider
the following tiling T4, 4.

Choose a sequence of regular points @, az,... which lie inside z and
converge to o. Since the set of regular points is a dense set one can always
choose such a sequence. Using the cut method one can see that for every
7 > 0, there is a number N such that all tilings Ty, with ¢ > N, are
coincident inside the ball of radius r centered at 0 (see (Le et al., 1993)).
Hence the sequence of tilings T}, defines a limit tiling, denoted T, ,. This
tiling depends on a and the corner z at ¢, but not on the particular sequence
;. If o is regular, then 2 = E* and T(a,0) = T
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Theorem 3.7 EBvery tiling in Tg is a translate of a tiling of the form
To,2)-

This follows easily from the analysis of limits of tilings in 7%; see (Le,
1995¢) for details. If z,y are two different corners at o, then T{a,z) and
T{a,y) are different.

Thus, when « is regular, it defines exactly one quasiperiodic tiling, but
when « is irregular, it defines several, finitely many, quasiperiodic tilings.
Irregular points corresponding to the irregular grids in (de Bruijn, 1981)

Example 3.1 Suppose only one hyperplane in Ir passes through a. Then
there are two corners, each is a half-space, denoted by 2, and z,. Two tilings
Tia,z,) and T(a,z,) are identical everywhere, except for a d-neighborhood of
a hyperplane in F, where d is a positive number. Hence they are identical
in a half-space. In the Penrose tilings case, the difference between the two
tilings is exactly the Conway worm.

3.6. TOPOLOGY OF 73

Let X be the set of all pairs (a,z) where & € E' and z is a corner at
. There is a natural mapping f : X — E' which sends (o, z) to a. This
mapping is finitely-many-to-one, and is one-to-one for all regular a.

For a point (a,z) of X let

Vo) ={(By)€X | Bez and znNy#0}.

Here Z is the closure of z in the usual topology of E*.

We endow X with the topology in which all the sets V(a,z) form a basis.
Consider the product X x F with the product topology. The above mapping
f can be extended to a mapping, also denoted by f, from X XE to E+x E =
R". The mapping is one-to-one almost everywhere.

The lattice Z"™ acts on Z™ by translation, and it is easy to see that this
action can be lifted to an action on X x E. The action is free.

Theorem 3.8 The factor space (X x E)/Z" is homeomorphic to Tg.

The homeomorphism is defined by: a pair (@, z),v) € X x E is mapped
to the tiling Ty, +v. This theorem follows easily from the above description
of tilings in 7%.

By adding a vector from E (which is isomorphic to R¥) to vectors in R™,
we get an action of R* on R”. This action can also be lifted to an action on
A x E. Both actions then induce actions on (X x E)/Z" and R*/Z" = T",
the n-dimensional torus.

The above mapping f induce to a mapping g : 7z — T". The dynamical
system (7g, R¥) is exactly (X x E)/Z",R¥). The mapping g, though not a

homeomorphism, is «
outside a subset of n
jugate). Hence if we
conjugacy, then it is
Remark 3.1 In c:
LI class 7. Note i
t+pt(Z(E)) is the
of irregular points is
way as in Sections 3
its topology using t}

4. Pentagonal T
4.1. SETTINGS

In this section we cor
tilings. Here dim E
dimensional subspac

Let the cyclic gr

act on R® by circuls
taken modulo 5).

It is easy to see t
and A. Here A is th

Note that A is ratic
FE is a 2-dimensi
m =

Vg =

E is spanned by tt
-5).

On E g acts as 1
We have

Bt =]

Note that Z(E) = I
A tiling of T is
such tiling and its

i




f a tiling of the form

tilings in 7%; see (Le,
at o, then T(, . and

1asiperiodic tiling, but
» quasiperiodic tilings.
in (de Bruijn, 1981)

asses through . Then
z; and z,. Two tilings
T a d-neighborhood of
:nce they are identical
rence between the two

and z is a corner at
ends (e, z) to a. This
or all regular o.

Ny # 0}.

f BL.
ets V(q,z) form a basis.

7y. The above mapping
om XXE to ELtxE =

s easy to see that this
on is free.
neomorphic to Tg.

v) € X X E is mapped

1 the above description

o R¥) to vectors in R®,
s lifted to an action on
)/Z" and R™/Z" = T",

— T". The dynamical
pping g, though not a

LOCAL RULES 345
homeomorphism, is continuous, respects the action of R¥ and is one-to-one
outside a subset of measure 0 (or, (7z, R*) and (7", R*) are metrically con-
jugate). Hence if we consider the dynamical system (7g, R*) up to metrical
conjugacy, then it is rather trivial.

Remark 3.1 In case A(E) # 0, then for each t € A(E) we have an
LI class Tg,;. Note that for each t € A(E), the set of irregular points in
t+p*(Z(E)) is the union of a finite families of parallel hyperplanes: the set
of irregular points is the intersection of Ir and ¢t + p*(Z(E)). In a similar
way as in Sections 3.5 and 3.1 one can describe the set 7g, together with
its topology using this collection of hyperplanes.

4. Pentagonal Tilings
4.1. SETTINGS

In this section we consider a class of tilings known as the generalized Penrose
tilings. Here dim F = 2 and dimR" = 5. Following is a way to fix the 2-
dimensional subspace E.

Let the cyclic group

Co={(g|g¢°=1)

act on R® by circular permutation of the basis: g(e;) = (e;4+1) (indices are
taken modulo 5).

It is easy to see that R® decomposes into three invariant subspaces E,E,
and A. Here A is the 1-dimensional subspace spanned by

6= (60+61+62+63+64)/5.

Note that A is rational; and on A the group Zs acts trivially.
E is a 2-dimensional subspace spanned by two vectors

v =4vV5-1,-vV5-1,-v5-1,V5-1),
v=(V5-1,4,vV5-1,-v5-1,-v5-1).
E is spanned by the two vectors #; and 3 (conjugate, replacing v/5 by
V).

On E g acts as rotation by 27/5 and on E g acts as rotation by 47/5.
We have

Et=E®A and RE=E®0E®A=E®E"*.

Note that Z(E) = E + E, and hence Z(E)* = A.
A tiling of T is called a pentagonal quasiperiodic tiling, because every
such tiling and its rotation by 27/5 belong to the same LI class. These

|
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tilings are also known as generalized Penrose tilings. Up to rotations and
translations there are two tiles as in plain Penrose tilings.

For a real number ¢ € R let B, = E + t6, and 7, = {T, a € E,}.

From the results of Section 3.3 we know that 7; is a single LI class.

Theorem 4.1 (de Bruijn, 1981) The set of plain Penrose tilings is T .

The sets 7; have many interesting properties, see (Kleman and Pavlov-
itch, 1987). Note that if t—¢' = 1 then 7; = T . One interesting property is
that the vertex-configuration densities depend continuously on ¢. It is not
difficult to show that all the sets 7; are metrically conjugate.

4.2. LOCAL RULES WITHOUT DECORATION

Now the question is for what ¢ € R does the set 7; admit local rules? For
local rules without decoration the answer is complete.

Theorem 4.2 (Ingersent and Steinhardt, 1991) If7T; admits a local
rule then t = p + qr, where p,q € Z, and T is the golden ratio,

7= (14 v5)/2.

The converse is true;

Theorem 4.3 Ift = p+ qr then T; admits a local rule. Moreover, the
radius of the local rule can be chosen < q(5+ v/5)/2+ 3 < 4q + 3.

One proof of Theorem 4.3 is the following. First we observe that

Theorem 4.4 Two sets T, and Ty are mutually locally derivable if and
only if t —t' is of the form m + nr, with integers m, n.

Proof This follows from Theorem 3.6, since when ¢ — ¢ = m + nT,
it can be checked easily (using the description of sets of irregular points
in Section 3.5) that the two corresponding sets of irregular points are -
congruent. 0O

We know that to admit a local rule is a property of the whole MLD
class. Since the case ¢ = 0 admits a local rule, all the cases t = m + nr
admit local rules. This prove the first part of Theorem 4.3. The radius of
the local rule can be obtained by a closer examination of the mutual local
derivability corresponding.

Actually, in (Ingersent, 1991) it was noticed that when t = nr then the
sets 7; and 7T are “equivalent”, which, in our terminology, means they are
in the same MLD class. So this is a special case of Theorem 4.4.

Note that this proof of Theorem 4.3 is based on results of de Bruijn
saying that the case ¢ = 0 admits a local rule. Another proof, which does

%

not need de Bruij
proving Theorem
rule.

For a concrete
t=0andt=rc

Since the case
1981; Griimbaum
set 7; of pentago
properties.

4.3. LOCAL RUL]

‘We have the follo

Theorem 4._5_ 1
Q[v5)), then T; a

after decoration ¢

The proof of
case t = 0 we g
inflation-deflation
dimensions (see n

In (Le, 1995a;
Theorem 4.3 by :
that the decorati
local rule) is uniq

Ift € Q[V5] L
local rule, but D
infinitely many ti

Example 4.1 (
since tilings in 7
above results, 7;
after decoration.
decoration). We
by mn/5; and a (
of these rhombi w
at an edge means
at a vertex mear
the key of Figure
Every decorai
tion, a tiling in °
ways) to become
which can be dec




ngs. Up to rotations and
: tilings.

E = {Ta,a S Et}.

I, is a single LI class.

ain Penrose tilings is T .

see (Kleman and Pavlov-
ne interesting property is
atinuously on £. It is not
" conjugate.

I; admit local rules? For
lete.

91) If 7, admits a local
golden ratio,

wocal rule. Moreover, the
/2+3<4q+3.

st we observe that

y locally derivable if and
m, n.

2 when t -t = m + a7,
" sets of irregular points
f irregular points are ¢-

O

rerty of the whole MLD
[l the cases t = m + nr
orem 4.3. The radius of
tion of the mutual local

at when ¢t = n7 then the
1inology, means they are
! Theorem 4.4. ’

on results of de Bruijn
iother proof, which does

LOCAL RULES 347
not need de Bruijn’s result, is sketched in the next subsection. In fact, while
proving Theorem 4.3 using the second method, we recover the Penrose local
rule.

For a concrete mapping realizing the mutual local derivability between
t =0 and t = 7 cases, see (Le, 1995b).

Since the case t = 0 has inflation/deflation properties, see (de Bruijn,
1981; Griimbaum and Shephard, 1987; Penrose, 1978) it follows that the
set 7, of pentagonal tilings with ¢ = p + g7 also has inflation/deflation
properties.

4.3. LOCAL RULES AFTER DECORATION

We have the following result (see (Le, 1995a)).

Theorem 4.5 Ift = (p + qV/5)/m, where p,q,m are integers (i.e., t €
Q[v5)), then T; admits a local rule after decoration. Moreover, the local rule
after decoration can be chosen to be a facet-rule (strict local rule).

The proof of this theorem is a construction of local rules; and in the
case t = (0 we get exactly the Penrose rule! The proof does not involve
inflation-deflation theory, and can be generalized to other cases of higher
dimensions (see next subsection).

In (Le, 1995a) we first proved Theorem 4.5, and then deduced from it
Theorem 4.3 by showing that when ¢ = p + ¢7 there is a number r such
that the decoration of a tile (in a decorated tiling satisfying the decorated
local rule) is uniquely determined by the plain r-map of a vertex of the tile.

Ifte Q[\/g] but is not of the form p + g7, then 7; does not admit any
local rule, but DOES admit a local rule after decoration. And there are
infinitely many tilings in 7; which can be decorated in more than one way.

Example 4.1 Consider the case t = 1/2. This case is of special interest
since tilings in 7; have 10-fold symmetry, as in the ¢ = 0 case. By the
above results, 7; does not admit any local rules, but admits a local rule
after decoration. In (Le, 1995a) we found the following local rule (with
decoration). We have 2 decorated rhombi in Figure 3 and their rotations
by mn/5; and a 0-map in the local rule is any 0-map formed by translates
of these rhombi with matching at edges and matching at vertices. Matching
at an edge means the arrows of a common edge must be the same; matching
at a vertex means only marked vertices can meet, and the marking form
the key of Figure 3.

Every decorated tiling satisfying this local rule is, ignoring the decora-
tion, a tiling in 7;, and every tiling in 7; can be decorated (in 1, 2, or 4
ways) to become a tiling satisfying this local rule. The set of tilings in 7;
which can be decorated in more than 1 way has measure 0.




.
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Figure 8. A local rule for pentagonal tilings with ¢ = 1 /2

4.4. LOCAL RULES FOR ALL PENTAGONAL TILINGS

The set 7 contains tilings of different local isomorphism classes. It is con-
jectured that this set admits a local rule. Moreover, it is conjectured that
the Kleman-Pavlovitch rule in (Kleman and Pavlovitch, 1987) is a local
rule for this set. We have a weaker result.

Let us consider the rule described in Figure 4. We have 6 decorated
rhombi, together with their rotations by mmn /5. The rule is a 0-rule whose
0-maps are those formed by these decorated rhombi with matching at edges
and matching at vertices. Here matching at an edge means the arrows of a
common edge must be the same; matching at a vertex means only marked
vertices can meet.

Note that this is a strengthened version of the Kleman-Pavlovitch rule:
if we erase the marking at vertices, then we get the Kleman-Pavlovitch
rule. Denote by 7" the set of all tilings satisfying this local rule.

Theorem 4.6 (a) Every pentagonal tiling can be decorated in a unique
way to become a tiling in T*.

(b) The set T* and the set Ty of all pentagonal tilings are metrically con-
jugate, i.e., every tiling in T*, except for a subset of T* of measure 0,
is a pentagonal tiling, ignoring the decoration.

(¢) If T is in T*, but not in T, then there is a tiling T' in Ty such that
T =T except for 2-neighborhoods of 5 straight lines.

For a proof see (Le, 1995c¢).
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[T
P s

Figure 4. The O-rules are defined by matching at vertex and at edge

We cannot exclude the case in (c), neither can we find any example of
a tiling in 7* but not in 75.

We conjecture that this rule is really a local rule (after decoration) for
the set of all pentagonal tilings. Since the decoration is local, i.e., can be
determined by inspection inside a disk of finite radius, it follows that if this
is a local rule after decoration, then local rules without decoration exist.

5. Sufficient conditions

Here, we give some sufficient conditions for the existence of local rules after
decoration. First, we introduce some definitions for subspaces of R™.
A k dimensional subspace E of R", equipped with a basis

(a) is totally irrational if it does not contain any rational point except 0.

(b) has quadratic slope if there is a positive integer D such that E is
spanned by k vectors with coordinates in Z[v/D).

First we consider the case n = 2k. A sufficient condition for the existence
of local rules after decoration is the following:

Theorem 5.1 (see Le et al., 1992, 1993; Le and Piunikhin, 1995)

If n =2k > 3 and E is totally irrational and has quadratic slope then Tz
admits a LR after decoration. This means there is a set T&  of decorated
tilings admitting a local rule such that when the decorations are ignored we
have Tz = Tg'. In addition, all the decorated tilings in Tz are quasiperi-
odic in the sense that they are sections of a decorated periodic tiling of R™.

Note that when F is totally irrational and has quadratic slope, E* is
also totally irrational. Hence 7g is a single LI class.
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The Ammann octagonal tilings (n = 4 = 2k) and the 3-dimensional
icosahedral tilings (n = 6 = 2k) have quadratic slope, hence, by this theo-
rem, they admit local rules after decoration.

Theorem 5.1 is valid only in case n = 2k. When n > 2k, as in the case
of pentagonal quasiperiodic tilings, there is a similar result.

Suppose that n > 2k > 3, and that E is totally irrational and has
quadratic slope. The space E is spanned by k vectors vy,... , U With co-
ordinates in Q[vD)]. Let E be the space spanned by #y,..., 7 (conjugate,
replacing v D by —v/D).

Proposition 5.2 The subspace E + E is of dimension 2k, and
Z(E)=EoE.

__ The proof is easy. Each t € A(E) = (E @ E)* defines a single LI class
Tg;: (see Section 3.3). The dimension of A(E) is n — 2k.

Theorem 5.3 Ift € A(E) has coordinates in Q(VD) then Tz, admits a
local rule after decoration.

Moreover, if E and ¢ satisfies some additional conditions then 7z, ad-
mits a local rule (without decoration). The additional conditions are rather
complicated. In the case of 5-fold symmetry (n = 5 and k = 2), E and ¢,
where ¢ is a multiple of 7, satisfies these additional conditions, hence e
admits local rules (without decoration). Some sufficient conditions for the
existence of local rules without decoration for the case n = 4,k = 2 will be
given later.

The theorem is a generalization of Theorem 4.5; actually, the proof of
Theorem 4.1 in (Le, 1995a) can be easily generalized to a proof of this
theorem (see also (Le and Piunikhin, 1995)).

Theorems 5.1 and 5.3 provide us with infinitely many set of quasiperi-
odic decorated tilings admitting local rules; not only in 2- and 3- dimensional
cases, but in any dimensional greater than 1.

The proofs of both theorems are reduced to classification of some kind
of homotopy classes, and are technically complicated. For details see (Le et
al., 1992; Le et al., 1993; Le and Piunikhin, 1995; Le, 1995a).

6. Necessary conditions

To our knowledge all the necessary conditions are formulated only for the
nondecorated version of local rules. The reader should not confuse the dec-
orated and nondecorated versions.
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6.1. THE SI CONDITION

For any tuple of (n — k — 1) indices J = (j1,...,fn-k—1) with 1 < j; <
*+* < Ju—k-1 < n, let H; be the (n — k — 1)-dimensional subspace spanned
by €j,,.-- ,¢€j,_,_,. Of course H; is a rational subspace.

Definition 6.1 FE satisfies the second intersection (SI) condition if for
every multi-index J = (j1,..., jn—k-1), the space H;+ E (whose dimension
is n — 1) contains a rational (n — k)-dimensional subspace.

Remark 6.1 Note that H; + E always contains a rational (n — k — 1)-
dimensional subspace: H,.

Originally, Levitov introduced the following definition.
For each i € {1,2,...,n} let L; be the (n — 1)-dimensional subspace
spanned by (n — 1) vectors from ey,... ,e,,without e;. Then the family

£i=L¢+Z"=L¢+me,~, meZ

is a family of equidistant (n — 1)-planes of R”. The intersection of £; with
FE is a family of equidistant parallel planes of codimension 1, called the i-th
grid of E. In general every k planes of codimension 1 in E have exactly one
intersection point. It follows that every k grids have at least one intersection
point different from 0.

We say that E satisfies the Levitov SI condition if every (k4 1) grids
have intersection points different from 0.

Suppose E is spanned by k vectors with coordinates :

v = (vll’ V12, .. 1v1n)1
vz = (Vg1, Ve, . ... s Uzn ),
Vp = ('Ulcly'vk% ses avkn)7
For I = (44,...,4), let d; be the determinant of the matrix consisting of

k columns iq,... , .

Proposition 6.2 The following conditions are equivalent:
(a) E satisfies the SI condition.

(b) E satisfies the Levitov SI condition.

(c) For every (k+1) indices {i1, i3, ... ,ix41} from {1,2,... ,n}, the (k+1)
numbers dr_;, j =1,... ,k+ 1 are linearly dependent over Q.

This is an easy exercise in linear algebra.
Theorem 6.3 If Tz admits a local rule then E satisfies the SI condition.
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Levitov gave a proof for the case k = 2, n > 3, see (Levitov, 1988). The
proof has a gap: the first of several lemmas used in the proof asserts that
if two tilings in Tg are coincident on a half-plane, then they are the same.
This is not true. In 75 there are infinitely many pairs of different tilings
which are coincident on a half-plane. For example, there are many pairs of
Penrose tilings which are differ by exactly an infinite Conway worm, see
Section 3.5.

A geometric proof of the theorem is given in (Le, 1992).

The SI condition is a nice one, but it is not very strong. Among all k-
dimensional subspaces of R", there are uncountably many that satisfies the
SI condition, while there are at most a countable number of them whose
corresponding sets of tilings admit local rules.

6.2. ALGEBRAICITY IS NECESSARY

A k-dimensional subspace E of R” is said to have algebraic slope if E is
spanned by k vectors whose coordinates are algebraic numbers.

Theorem 6.4 If 7 admits a local rule then E has algebraic slope.
A proof is given in Section 8.

7. Thecase n =4, k =2

We consider local rules without decorations.

7.1. QUADRATICITY IS NECESSARY

We first recall the well-known Pliicker embedding. See, for example (Grif-
fiths and Harris, 1978). A 2-dimensional subspace E in R* is determined
by two linear equations:

a1A1 + @2z + azAz + aghg = 0,
bidi + b Ao + b3z + by Ay = 0.

Here a;, b; are real numbers; and Ai’s are the coordinates. Let

- a; aj
A,J-—det( b b ),
with 1 < i < j < 4. Then
A2Azg — A1z Aoy + Ay =0. (7.1)

Conversely, every six numbers Aij, not all zero, satisfying this equation,
define a 2-dim subspace of R%. Two collections A;; and Aj; define the same
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2-dim subspace if and only if they are proportional. In other words, the
Grassmanian G4 is a quadric in the projective space RP, defined by
equation (7.1).

It is easy to see that E has quadratic slope if and only if, after multi-
plying by some scalar, all the A;; are in Q[v/D)] for some natural number
D. The set Q of all quadratic 2-dim subspaces is countable.

Using the definition of the SI condition, one can prove the following

Proposition 7.1 The set of 2-dim subspaces which satisfy the SI condi-
tion is the union of Q and C, where C is the union of infinitely (countably)
many algebraic curves in Ga 4.

Note that while the cardinal of Q is countable, the cardinal of C is the
continuum. It is interesting that the intersection of Q and C is not empty.

Levitov conjectured that only those E in Q can admit local rules. We
have an even stronger result: :

Theorem 7.2 If E admits a local rule, then E is in Q, but not in C.

(For a proof see (Le, 1992).) This means, if E admits a local rule, then
E has quadratic slope and in addition, E must satisfy some additional
condition (not belonging to C). The latter condition can be made explicit
as follows.

Theorem 7.3 If E admits a local rule, then E has quadratic slope and
(A13A24 : A14A23) ¢ Q. (7-2)

(The ratio of any two of the three terms in equation (7.1) is irrational).

This is a reformulation of conditions given in (Le, 1992), see (Le, 1995¢).
The set of all 2-dimensional subspaces having quadratic slope but not sat-
isfying (7.2) is the set of roots of a polynomial with rational coefficients in
Q. Hence most 2-dim subspaces having quadratic slope satisfy (7.2).

The quadraticity of E follows from the fact that G3,4 is a quadric! In fact,
in (Le, 1992), we show that if local rules exist, then E is in the intersection
of a projective line of rational coefficients with the quadric Gy 4.

A stronger result is

Theorem 7.4 E admits a weak local rule if and only if E has quadratic
slope and satisfies (7.2).

For definition of weak local rules see Section 8. Proofs of most results
in this section are in (Le, 1995c).

Compared with the previous theorems (about the existence of local rules
after decoration), we see that if E has quadratic slope but does not satisfy
(7.2), then E does not admit (even weak) local rules, but does admit a local
rule after decoration. Hence local rules after decoration, in some sense, are
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even weaker than weak local rules. In such a case there are tilings which
can be decorated in different (but a finite number of) ways.

Example 7.1 The plain Ammann tilings can be obtained using the strip
projection method (see (Beenker, 1982)) with

dim(E) =2 and dim(R")=4.
The projective coordinates of E are the following:

Ap=3, Ap=-V2 Ay=-1,
Ay =1, Ay=-V2, Ay=1

E has quadratic slope but does not satisfy (7.2): AjpAsy : AgyAdyq = 3/2,
a rational number. By Theorems 5.1 and 7.3, E does not admit local rules
(first proved by Burkov, 1988), and E does admit a local rule after decora-
tion, see (Ammann et al., 1992; Socolar, 1989).

The proof of the existence of local rules, using the method in (Le et al.,
1992) leads to a concrete local rule, which is in fact the same as Ammann
rules (see (Le, 1993)).

7.2. SUFFICIENT CONDITIONS

The question now is which 2-dimensional subspaces admit a local rule with-
out decoration. If E has quadratic slope and satisfies (7.2), then it is very
close to admitting a local rule.

Theorem 7.5 Suppose that E has quadratic slope and satisfies (7.2). Sup-
pose, in addition, that

(a) the Z-module spanned by Ays, Ags, Asy contains
A23A13/A12, A23A14/A12, Ag3Ass/Az and A23A14/A24; and

(b) the Z-module spanned by Ay, Ays, Ay contains
Ag3Avs/Asz, AgaAra/Ars, AzsArafAss and AgzAgy/Ass.

Then T admits a local rule (without decoration).

The proof is a refined version of the proof in (Le et al., 1992), see (Le,
1995c¢).

For example, in the following situation, E satisfies all the condition
listed in Theorem 7.5.

Let

NIRC.ETEY.
==
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Let E be the 2-dimensional subspace of R* with the following projective
coordinates: ‘

A =1, Ap=X" Ay=2"N\-1),

A =N, Ay=) Az =A™,
where m, ! are arbitrary integers. It can be checked easily that E satisfies
all the condition listed in Theorem 7.5, hence
Theorem 7.6 The set Tz admits a local rule (without decoration).

So we have infinitely many sets of 2-dimensional quasiperiodic tilings
which admit local rules without decoration. These sets of tilings are pair-
wise nontopologically conjugate; any two of them are not mutually locally
derivable. We don’t know if these sets of tilings have inflation/deflation
theory.

8. Algebraicity is necessary

We are going to prove Theorem 6.4. We will discuss the notion of weak
local rules and r-volumes.

" 8.1. LIFTING A TILING OF E; WEAK LOCAL RULE

A k-polyhedral surface is any union of k-facets of Z™ which projects (by
7) homeomorphically onto E.

Every k-polyhedral surface defines a tiling T' of E, by projecting the
polyhedral structure onto E. We say that the k-polyhedral surface is a
lift of T. (This kind of lifting is different from the lifting in (Le, 1995a;
Le et al., 1993)).

Suppose T is a tiling of E whose tiles are translates of tiles in Tg, with
one vertex at the origin.

Proposition 8.1 There is at most one lift of T passing through the origin.

Proof One sees that if a vertex of T' has been lifted, then all neigh-
boring vertices, that can be connected to this vertex by an edge of the
tiling, can be lifted uniquely. 0

This proposition says that if there are two lifts of a tiling, then the two
lifts are t-congruent.

For example, for regular o, T, has a lift which lies in the tube y+ E +a.
In particular, the projection of a lift onto E+ is a bounded set.

Definition 8.2 We say that E admits a weak local rule if there is a num-
ber r such that every tiling in Tg(r), after a translation, has a lift whose
projection onto Et is bounded. If such an r exzists, we say that the r-rule
is a weak local rule for Tg.
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Recall that 75 (r) is the set of tilings every r-map of which is t-congruent
to an r-map of a tiling in 7g.

Since the lift is unique up to translations, if E admits a local rule, then
it admits a weak local rule. Also if such r exists, as in the definition, then
every tiling satisfying the r-rule is aperiodic (we assume that E is totally
irrational). This means weak local rules always guarantee aperiodicity.

Theorem 6.4 is a consequence of the following.

Theorem 8.3 If E is totally irrational and does not have algebraic slope,
then E does not admit any weak local rules.

The rest of this section is devoted to a proof of this theorem. The main
idea is to show that for every given r > 0, there is another k-plane F very
close to E, such that r-maps of tilings in 7 are t-congruent to r-maps of
tilings in 7. We show this by using the notion of r-volumes.

8.2. APPROXIMATION OF E

From now on we fix a k-dimensional subspace E which is totally irrational
and does not have algebraic slope.

Fix a number r. Replacing r by a larger number if necessary, one may
assume that there is no projection of integer points on the boundary of the
ball V, in E of radius r and centered at the origin,

©(Z*) N (V,) = 0.

Since 7(Z") is countable, such an r, larger than the original one, can always
be chosen.

Let K = p*(v), where v is the unit cube. Let K be the interior of K in
E*. The following is trivial.

Lemma 8.4 For z € E*, K and K — = have nonempty intersection if
and only ifz € K — K.

Lemma 8.5 There is no integer point in K-K , except for the origin.

This lemma has been proved in (Oguey et al., 1988).

Let M be the set of all integer points in (K — K) + V,. It is a finite set.
Consider the tube y + E and its translations by some integer vectors

7+E+77i» 77i€Z"ai=1,--~,’m~

These tubes may or may not have intersection.

Theorem 8.6 There exists a sequence Es, Es, ..., of k-dimensional sub-
spaces of R™ such that

(a) E, converge to E as s — oo, and E, # E,
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(b) For any integer points 0y, ..., Ny in
M=z"n(K-K+V,),

the intersection m
N(E+v+m)
i=1

has dimension n if and only if the intersection

ﬁ(Es '|"'7 +hi)

i=1
has dimension n, for every s =1,2,....

(c) Any integer point in the boundary of (K — K) + V, must be also in the
boundary of each (y — v) + E,.

This follows from the fact that E does not have algebraic slope. The proof
is based on Tarski’s theory of real algebra and is given in Section 8.7.

For a subset P of Et, let us define ¢(P) as the subset of E consisting
of projections of all integer points in the tube P + E, ‘

¢(P) =p[(E+ P)nz"].

For example, if o is E-regular, then the set of vertices of T, is p(a+ K).
If P does not contain any projection point of Z" then (P) = 0.

There is a natural way to subdivide a+ K into smaller polyhedra, called
r-volumes. Points of Z" which project into the same r-volumes project on
E into vertices whose r-maps are ¢-congruent. The notion of r-volumes was
introduced in (Ingersent and Steinhardt, 1991), and is presented in the next
section.

8.3. R-VOLUMES

Suppose « € Et is E-regular. We know that v is a vertex of T, if and only
if v € p(a + K), i.e., v is the projection of an integer point ¢ in the tube
E + a+ K. By Lemma 8.5 the integer point £ is unique.

We consider the question when the edge connecting v and v + el‘ is an edge
of T,. This happens if and only if both ¢ and £ + ¢; belong to the tube
E + o+ K. This means p*(£) and p*(£ + ¢;) belong to a + K. Hence one
has

Proposition 8.7 A point v is o vertex of Ty, and at the same time the
segment connecting v and v + ey is an edge of T, if and only if v is in
pla+ Q), where @ = KN (K —et).
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Lemma 8.8 Ifv and v+ x are vertices of Ty, then z is the pr%'ectz'on of
a unique integer vector ¢ whose projection onto E* lies in K —

Proof Let v be the projection of integer point &;, and v + z be the
projection of integer point &, with both &; and &, in the tube o + K + E.
Then ¢ = &—¢,. Both p*(¢;) and pt(£,) are in a+ K. Hence their difference
isin (a+ K)— (a+ K ) = K — K. Uniqueness of ¢ follows from Lemma,
8.5. O

Recall that M is the set of integer points in (I%' -K )+ V... The projection
of M onto E+ is in K — K. Consider all translations of K of the form K —z
with z € p*(M). The superposition of these translates of K divides K into
smaller convex polyhedra

N .
K=|JK%,
i=1
called the r-volumes. The number N, as well as the division, depends on
the radius r. The following theorem explains the significance of r-volumes.

Theorem 8.9 Suppose o, B are E-regular. Then

(a) The boundary of a + KW does not contains any projection of integer
points. In other words p(8(a + K®)) = §.

(b) If v belongs to p(a+ KYW) and w belongs to p(B+ K®), with the same
indec i, then the r-maps at v of T, and at w of Ty are t-congruent.
Hence each r-volume defines an r-map.

(¢) Two different r-volumes define different r-maps.

Proof (a) The boundary of o+ K does not intersect p*(Z"). The
latter, being a Z-module, is invariant under translations from p* (z™). Now
the r-volumes are formed by K and its translations by vectors from the
Z-module. Hence the boundary of an r-volume does not intersect pt(Z").

(b) and (c) follow from Proposition 8.7 and Lemma 8.8. O

Here is a way to recover an r-map from an r-volume. Let the center of
the r-map be the origin. Then the set of vertices of the r-map is the set of
points of the form ¢(z), z € p-(M), such that z + K@ lies in K.

8.4. PLANES CLOSE TO E

We will consider k-dimensional subspaces F' which are very close to E. This
new F defines a new set of tilings 7. The tiles are different from tiles of
Tg. We can transform tilings in 77 to tilings whose tiles are translates of
tiles in 7g as follows.

Suppose o is F-regular, then the tube F + a + y contains a unique
k-polyhedral surface, and projecting along F- onto F gives a tiling in 7.
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‘Instead of projection along F'* onto F we consider the projection along E*

oito E. Since E satisfies condition (3.1), when F is sufficiently close to E,
the k-polyhedral surface projects (along E') one-to-one onto E, giving a a
tiling, denoted by U(a, F). The tiles of U(a, F') are the same as the tiles of
the tilings in 7, since they are projections of k-facets along the same E*
and onto the same E.

A lift of U(e, F) is in the tube F + a + 4, and hence the projection
of the lift onto E' (along E) is not bounded. This implies that U(c, F)
cannot belong to 7.

Let U(F") be the set of all tilings U(c, F), with o regular with respect to
F. Then the closure U(F) and 7 are mutually locally derivable. In some
sense, tilings in U (F) and tilings in 77 have the same order, only the shapes
of tiles are slightly different.
___If every r-map of U(F) is t-congruent to an r-map of T, then Tg(r) O
U(F), hence the r-rule cannot be a weak local rule for E.

This will be used in the proof of absence of weak local rules.

We suppose that the E, of Theorem 8.6 are sufficiently close to E so
that one can construct the set of tilings U(E,) as above described.

Denote by ;- the projection along E, onto E*. Let K, = 7} (7).

For a set P in E* we define

¢s(P) = pl(P + E,) N Z7],

the set of projections of integer point in the tube P + E,. Then the set
of vertices of U(a, E;) is p,(a + K). For U(E,) one can construct similar
r-volumes as follows.

Lemma 8.10 For sufficiently large s, the set of integer points in K, -
K, + V. is M, the same as the set of integer points in K-K+ V.

Proof Consider the cell (K — K) + V.. By definition, all points of
M are in the interior of this cell. Since M is finite, the minimum distance
from points in M to the boundary of the cell is a positive number, hence
if s is sufficiently large, i.e., if E, is sufficiently close to E, then the cell
(K, — K,) + V. contains M in its interior.

If (K, — K,) + V, contains a new integer point £, then ¢ must be on
the boundary of (K — K) + V,.. But by c) of Theorem 8.6, £ is also on
the boundary of v — v + E,, which contains the cell (K, — K,) + V,. This
contradicts the fact that € is an interior point of this cell. O

By restricting to a subsequence, we can assume that all F, satisfy the
conclusion of this lemma.
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Consider the superposition of all translates of K, of the form K, — z,
where z € ;- (M). Together they divide K, into smaller convex polyhedra

N,
K,=JK®.

i=1

Each K{? is called an r-volume of 7 (E,). The following result is similar
to Theorem 3 and can be proved in the same way.

Theorem 8.11 Fiz s. Suppose «, 8 are E,-regular. Then

(a) The boundary of a + K does not contains any projection of integer
points. In other words ¢,(8(a: + K(M)) = 0.

(b) If v belongs to (o + K) and w belongs to p,(8 + K@), with the
same indez i, then the r-maps at v of U(a, E,) and at w of U(B, E,)
are t-congruent. Hence each r-volume defines an r-map.

(c) Two different r-volumes define different r-maps.

We will see that the division of K, into r-volumes is the same as that of K.

8.5. PROOF OF ALGEBRAICITY

For a fixed s, we say that K, — ) (z) is corresponding to K — p*(x), where
x € M. Consider the following condition:

(*) m polyhedra K — z;,i = 1,...,m with z; € p*(M) have nonempty
interior intersection if and only if their corresponding polyhedra have
nonempty interior intersection.

If (*¥) is true for every finite collection zi,...,Zn, in M, then from
the construction of r-volumes, one sees that N, = N, for every s, and
the division of K into r-volumes is the same as the division of K, into 7-
volumes. This means, after a permutation, one has that K and K(" define
exactly the same r-map. This follows from the construction of r-volumes,
and the way to recover r-maps from r-volumes.

So if (*) is fulfilled for every s, then every r-map of U(E,) is t-congruent
to an r-map of 7g; hence

Tu(r) DU(E,).

This implies that r-rule is not a weak local rule for E.

Note that K, + 71 (n;) is the projection (by ) of the tube E, + vy +
7i, hence m polyhedra K, + n(7:),i = 1,...,m, have nonempty interior
intersection if and only if the intersection

m

N +E, +m) (8.1)
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has dimension n.

By Theorem 8.6, for every finite number of vectors n;,¢ = 1,...,m in M,
the dimension of the tube (8.1) is n if and only if the tube (8.1), with E,
replaced by E, has dimension n; which, in turn, happens if and only if
m polyhedra K + p(n;) have nonempty interior intersection. Hence (*) is
true.

Thus we have proved that for every r, r-rule is not a weak local rule
for E. This means FE does not admit any weak local rule. Theorem 8.3 is
proved, and hence so is Theorem 6.4.

It remains to prove Theorem 8.6. We first present Tarski’s theory on
real algebra.

8.6. TARSKI'S THEORY

A rational polynomial condition on variables z,...,2; is one of the fol-
lowing equation or inequalities:

f=0 f>0 f<0, f<0, f2>0.

Here f is a polynomial in z; with rational coefficients.

The set of solutions (21,...,2), 2 € R, of a finite system of polynomial
conditions is called a quasi-algebraic set. We emphasize that all the z;’s
must be real numbers.

A generalized quasi-algebraic set is the union of any finite number of
quasi-algebraic sets.

A point in R! is algebraic if all its coordinates are algebraic numbers.

Theorem 8.12 (Tarski) (see, for example, (Jacobson, 1963).) Let X be
a finite set of rational polynomial conditions on (q+m) variables 2, ..., 2z,,

Y- Ym-

(a) The set of (y1,...,Ym) € R™ such that the system ¥ has a solution
is a generalized quasi-algebraic set.

(b)  has a solution in R™™ if and only if it has an algedbraic solution.
The following fact is well-known.

Theorem 8.18 In every generalized quasi-algebraic set, the set of alge-
braic points is dense in the usual topology.

Proof (We thank S. Schanuel for supplying this proof). It suffices to
consider a quasi-algebraic set Y, which is defined by a finite system £ of
rational polynomial conditions. Suppose (2], ..., 2J) is a point in Y. Choose
rational numbers a;, b; such that a; < 2? < b;, and |a; — b;| < &, where g > 0
is any given number. Adding the condition a; < z; < b; to X, by part (b)
of Theorem 8.12, one see that there is an algebraic point satisfying this
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enhanced system. The distance between the algebraic point and the given
point is as small as desired. 0O

The following follows easily from the definition.

Proposition 8.14 Suppose that X, Y are generalized quasi-algebraic sets.
Then X NY, X UY, and X \ Y are generalized quasi-algebraic.

8.7. PROOF OF THEOREM 8.6

We have fixed coordinates in R™. Then there is an (n — k) x n matrix Ag
of rank (n — k) such that E is the set of all vectors satisfying the linear
equation Ag(v) = 0. This matrix Ag is not unique, say , one can replace one
row by the sum of itself and a multiple of another row. Using elementary
operations on rows, the fact that rank of Ag is k, and a permutation of
basis vectors if needed, one may assume that the first n — k columns of A
form the unit matrix. Denote by Ag the (n — k) x k matrix formed by the
last k columns. _

In general, if A is an (n — k) x k matrix, let A be the (n— k) x n matrix
obtained from A by adding the unit (n — k) x (n — k) matrix to the left of
A.

The set of all k x (n— k) matrices is isomorphic to R¥™=*), which has the
same dimension as Gy, ,. And every such matrix A defines a k-dimensional
subspace consisting of vectors v such that A(v) = 0. :

The corresponding A — k-dimensional subspace of R™ is a homeomor-
phism between R*~¥) and a neighborhood W of E in Gy ,. We use the
matrix A as coordinates'in this neighborhood W. It is easy to see that E
has algebraic slope if and only if all the entries of matrix Ag are algebraic
numbers.

Proposition 8.15 For fized integer vectors 1y, ...,N, € Z", the set of k-
dimensional subspaces F in W such that the dimension of N2, (F +~ +n;)
is n, s generalized quasi-algebraic.

Proof The intersection N2, (F +++7;) has dimension n if and only
if the intersection

NE+4+n) 82)

is not empty, where {is the interior of the unit cube ~.
A vector v is in the intersection (8.2) if and only if v is in each tube 4+ F+1),.
Or, equivalently, there are vectors ; in « such that v — a; € F, i.e.,

AF(U —a;) =0, k (8.3)
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foreveryi=1,...,m.

Consider equations (8.3) as equations on coordinates of the v, a; and Ap.
They are rational polynomial conditions. Add to this system the conditions
that coordinates of the «;’s are strictly between 0 and 1, so that the a;’s
are in the interior of unit cube. We have a system of rational polynomial
conditions. And the set of F' in question is the set of F' such that this
system has a solution. It follows from Theorem 8.12, part (a), that this set
is generalized quasi-algebraic. 0

Corollary 8.16 For fized integer vectors m,...,Mm € Z", the set of F €
W such that the dimension of "%, (F++y+m;) is not equal to n is generalized
quasi-algebraic.

The set in the proposition is the complement to the set of the previous
proposition. Hence this follows from Proposition 8.14.

Proposition 8.17 Fiz an integer point . The set of all F in W such
that 1) is on the boundary of (y—)+ F is a generalized quasi-algebraic set.

Proof Let Z; be the set of all FF € W such that n is in F' + (y — ),
Z, be the set of all F' € W such that n is in F + (§ — 4).

The point 7 is in (y— ) + F if and only if there is a vector a € (y—7)
such that n — a is in F, i.e., Ar(n — a) = 0. This is a finite set of rational
polynomial conditions on coordinates of F and a. Add to this system the
conditions that all the coordinates of & are between —1 and 1 (so that «
is in 4 — 7). Applying Tarski’s theorem we see that Z; is a generalized
quasi-algebraic set.’

In a similar way one can prove that Z, is a generalized quasi-algebraic
set. Now note that the set in question is Z; \ Z;, and hence is also a gen-
eralized quasi-algebraic set. 0

Proof of Theorem 8.6 Let k= {n,...,n,} be a finite set of vectors
in M. If the dimension of N2, (E + v +n;) is n, let Y, be set of all F in W
such that the dimension of N, (F + v + ;) is equal to n. If the dimension
of N, (E + v + ;) is not n, let Y, be the set of all F in W such that
dimension of N2, (F + v + n;) is not n.

An integer point on the boundary of (K — K) + V, must be in §(K —
K) + V,, since there are no projections of integer points on the boundary
of V,, by the assumption about r. So every integer point on the boundary
of (K — K) + V, is on the boundary of vy — v+ E. For each integer point 7
on the boundary of (K — K) + V, let Z, be the set of all F' in W such that
7 is on the boundary of y —y + F.

By Propositions 8.13-8.16, Y, and Z, are generalized quasi-algebraic,
hence so is the intersection Y of all Y, Z,, when & runs through the set
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of all subsets of M, and 7 runs through the set of integer points on the
boundary of K — K + V.

It is important that E is in this intersection Y. Since the set of algebraic
points is dense in every generalized quasi-algebraic set, by Theorem 8.13,
there is a sequence of algebraic points E,, E,,... in the intersection which
converges to E. The fact that E is not algebraic means that E, # E for
every s. All E, are in every Y, hence for every x = {m,...,nm}, the
dimension of N2, (F + 7 + 7;) is equal to n if and only if the dimension of
M2y (F + v +m:) is equal to n. This proves (b).

All E, are in Z,, for every integer point 1 on the boundary of K~ K+V,,
hence n is on the boundary of y—~+ E,, by the definition of Zy. This proves
(c). Theorem 8.6 is proved. 0

Remark 8.1 When E does not satisfy (3.1), the only obstruction to the
proof is that the projection along E' onto E, when restricted to the k-
polyhedral surface in the tube F' + v + o, may not be one-to-one for every
F in a small neighborhood of E. But this can be overcome easily, since
the set of all F' in W such that the mentioned projection is one-to-one is a
generalized quasi-algebraic set. In all statements about the existence of E,,
one needs to add the restriction that E, is in this generalized quasi-algebraic
set. The remainder of the proof remains the same.
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