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Introduction 

Quasicrystals are quasiperiodic tilings of the Euclidean space IWk by a finite (up to 

translations) number of polyhedra. For the history and reviews we refer to [2,6,7]. One 

of the most important problems in the theory of quasicrystals is the question what kind 

of quasiperiodic order might appear in the Nature as a property of real materials. It 
seems sound to require the “physical” quasicrystals to admit restoration by means of 

only information of its local structure (i.e. on the finite number of admissible configu- 
rations of (possibly decorated) tiles). A well-known example of such Local (matching) 

Rules are the Penrose-de Bruijn arrowed rhombi. According to [a], quasiperiodic is any 

tiling of the plane by these rhombi, providing the obvious matching condition is met, 

that the common edges of neighboring rhombi are to have definite arrows on them. 
The purely mathematical problem to find sets of prototiles such that every tiling 

of the L-dimensional Euclidean space by these prototiles must be aperiodic, or more 

difficult, quasiperiodic but not periodic seems interesting and investigated by many 

authors (cf. [l-5,7-10,12-19]). Th e t erm “Local Rules” was suggested by A. Katz [9] 

and L. S. Levitov [la] for the matching prescriptions, enforcing quasiperiodicity. 
We fix standard Euclidean coordinates in IW~. Let E be a k-dimensional plane in IW~ 

going through the origin 0, cx be a vector of IWn. For generic (Y there is a quasiperiodic 
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tiling T, on E which appears from the so called strip projection procedure (cf. [6, IS]). 
In our previous paper [13] it was proved that if Ic = 2, n = 4 and E is quadratic (that is, 
it is spanned by vectors with coordinates in Zfi ) and is totally irrational (that is, E 

dose not contain any integer points except 0) then the tiling T, has a local rule. Here 

we generalize this result for multi-dimensional cases. The algorithm of construction of 

these LR is also presented. 
The paper is organized as follows: In Section 1 the definitions and notations are 

introduced. In Section 2 we recall the cut method and the strip projection method 

and explain how to define matching rules. In Section 3 some technical results, important 

in our construction of LR, are proved. In Section 4 the existence of quasiperiodic LR 

is established. 

1. Basic definitions and notations 

1.1. A colored polyhedron is a pair (P,j) where P is a polyhedron, j is an integer, 

called the color of this polyhedron. Two colored polyhedra are congruent if their colors 

are the same and the second is a translate of the first. In this paper we always make 

distinction between two congruent polyhedra. 

A tiling of IR” is a family of k-dimensional polyhedra which covers Iw” without holes 
and overlaps such that up to translations there is only a finite number of polyhedra 

in this family. A polyhedron of a tiling is called its tile. A tiling is called special if 

the intersection of every two its polyhedra is a common facet of lower dimension, if 

not empty. In this paper tilings are always assumed to be special unless the case of 

family 0 and its refinements that appear later. A colored tiling is a tiling whose tiles 

are colored polyhedra such that up to congruence there is only a finite number of tiles. 

An r-map is an arbitrary collection of colored polyhedra lying inside a ball with 
radius T, where T is a real number. Two r-maps are congruent if the second is a 

translate of the first and the corresponding colors of polyhedra are the same. If T is 

a colored tiling and v is a vertex of T then the r-map of T at v is the collection of 

colored tiles of T lying inside the ball with center at v and radius r. 

A local rule A of radius r is any finite set of r-maps. A colored tiling T satisfies this 

local rule A if the r-map of T at every vertex is congruent to an r-map from A. 
A special type of local rule is the vertex type defined as follows. A star is a collection 

of colored polyhedra having a common vertex. Two stars are congruent if the second 

is a translate of the first and the corresponding colors are the same. A finite set A of 
stars is called a local rule of vertex type. In this paper we shall encounter only local 

rules of vertex type. A star-configuration of a tiling T at a vertex is the collection of 
all the tiles incident to this vertex. A colored tiling T satisfies local rule A of vertex 

type if the star-configuration of T at any vertex is congruent to one of A. 

A local rule is called quasiperiodic if it is not trivial, i.e. at least one colored tiling 

satisfies it, and every colored tiling satisfying it has to be quasiperiodic. The exact 
definition of quasiperiodicity will be given later in Section 2.1. 
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A family IA of colored tilings is called to admit a local rule A if U is the set of all 

colored tilings satisfying this local rule. 

1.2. In the Euclidean space IW~ with origin 0 we fix a standard basis ~1,. . . , E,, . Let 
Zn be the integer lattice. For a set of vectors ~1,. . . , v, from Rn let 

POl(Vr,. . .) %) = 
{ 

2 xiv; ] x; E [o, 11 . 
i=l 1 

The set y = Pol(~r, . . . ,E~) is called the unit c&e. Let 

indices (ir,. . . , ij) such that 1 < ir < ix < . . . < ij < n. 

multi-index of Mn-j such that I U I” is {1,2,. . . , n}. For I 

set yI = Pol( E;, ( . . . , E;]) and its translates by integer vectors 

ralled j-facets of the lattice En. 

Mj be the set of multi- 

If I E Mj let I” be the 
= (il,. . .,iJ E A4j the 

(i.e. vectors from Z?) are 

We shall always have to do with two planes: a k-dimensional plane (or briefly k- 

plane) E and an (n - k)-plane E’ in Rn such that E n E’ = (0). Denote by p the 

project,or along E’ on E and p’ the projector along E on E’. Put e; = p(Ei), ei = 

p’(E;), i = 1,. . . , n. A set X is called an E’-prism (or briefly prism) if X = p(X) $- 

p’(_X). Let El be the (n - k)-plane perpendicular to E. 

A k-plane going through 0 is called totally irrational if there are no integer points 

lying on it except 0. A k-plane E is called rational (resp. quadrutic) if it goes through 

0 and is spanned by k vectors VI,. . . , ZIP with coordinates belonging to Q (resp. Qfi, 
lvhere D is a, natural number). In the case E is quadratic, vu; must be quadratic, tha,t 

is, VU; = u; + bifi, where ai and b; are vectors with rational coordinates. Let 2 be the 
plane spanned by V; = ai - bifi,for i = 1,. . . , k. 

Proposition 1.1. Suppose that E is quadratic and totally irrutionul. Then: 

a) 2k vectors al,. . . , Uk, bl, . . . , bk are linearly independent. 

I>) dim E := dim2 = k. 

c) En E .= (0). 

d) fi is totally irrational. 

Proof. a) Since a;, b; are rational vectors, they are dependent over IR if and only if 

t.hey are dependent over Q. Suppose there are rational numbers m;, n;, i = 1,. . . ,n 

such that ca,( m;U; + nib;) = 0. Consider vector v = ~~="=,(m;Jo + ni)v;. Then 

1’ E E and 

v q = &nLifi + n;)(u; + b;JD) 
i=l 

= fJdB(?&Ui + nib;) + (??ZiD + ?ZiV%)) 

i=l 

n 

ZZ 
cc 

m;mi + n&i). 

i=l 
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This means that v is rational, hence rn; = n; = 0 for every i = 1,. . . , n. 
b) This is a corollary of the previous. 
c) If x E En E then z is quadratic, x = a + bJD with a, b rational. But in this case 

a: = a - bfi also belongs to En ti and so a = (CC + %)/2 belongs to En E. It follows 

that a = b = 0. 

d) If o E E and w is rational then V = u is rational and belongs to E, hence u = 0. 
0 

As a corollary we see that in the condition of Proposition 1.1 we always have n > 2k. 

Proposition 1.2. Suppose that E is a totally irrational k-plane and E’ is un (n - k)- 

plane with E n E’ = (0). Then: 
a) The projection of 7P on E’ (by p’) is one-to-one. 
b) If F is a rational plane containing E then F contains E $ %. 

c) If in uddition n = 2k then the set p’(F) is dense in E. 

The proof is trivial, and we omit it. 

In the whole paper we always assume that E is totally irrational and quadratic. 

2. The strip method, the cut method and local rules 

2.1. The strip method and the cut method 

Let us briefly recall these methods used to construct quasiperiodic tilings. The reader 
is referred to [6,11,18] for full expositions on these subjects. 

Let E be a totally irrational k-plane in Rn. We obtain a strip in Rn by shifting the 

cell y along an affine k-plane parallel to E: 

S,=E+y+cr, (YEE’. 

It is proved in [18] that for translation o such that the boundary of the strip does 

not contain any point of Z:” (in this case Q is called regular) the strip contains exactly 

a unique k-dimensional surface built up of k-facets of the lattice F lying in S,. This 

surface goes through all the vertices of the lattice Zn falling inside S, and has an obvious 

polyhedral structure. By projecting along E* on E this polyhedral structure we get a 

tiling T, of E. Note that there are no overlaps: the restriction of the projector along 
EL on this surface is one-to-one. The prototiles are the projections of k-dimensional 

facets of the lattice iY. If instead of projection along EL we take projection along E’, 

overlaps may happen. But if there are no overlaps (for example when E’ is near to El) 

we get a new quasiperiodic tiling of E, which is topologically equivalent to the old one: 

only shapes of prototiles are changed, while the order of tiles is the same. 
Let 7~ be the set of all tilings of the form T, with regular (Y E E’. 

If (Y is not regular then the family of all k-facets of Z? falling in the strip S, does 
not form a proper surface. We can delete, in many way, some facets from this family 

such that the remaining ones form a surface which projects one-to-one by the projector 
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along El onto E, and a tiling of E is received. This tiling is called a tiling defined 

by (Y. An irregular (Y defines many tilings, sometime even an infinite number of tilings. 

But only some of them will be considered quasiperiodic. 

Definition. A sequence of tilings T;, i = 1,. . . , m, . . . of E converges to a tiling T if 

for every T > 0 there exists a number N such that T; coincides with T for i > N inside 

the ball U, with center at 0 and radius T. 

Let IE be the set of all tilings which are the limits of sequences of tilings belonging 

to 7-E. 

A tiling congruent to a tiling from 7~ is called a quasiperiodic tiling associated 
with E. 

In general if a is not regular then not all the tilings defined by cr are quasiperiodic, 

but only some of them are (cf. [14]). 

Let’s now consider another construction of these tilings, known as the cut method 

[18]. Put PI = p(y~), PI” = -p’(y~=) and Cl = PI + P,“, (71,~ = Cl _t [, I E Mk. 
Each CI,~ is a prism. If a L-plane E + Q intersects with a prism CI,~ then the inter- 

section is congruent to PI. For a prism X we define all(X) = p(X) + a(p’(X)) and 

a’(X) = &p(X)) + p’(X) w h ere dY is the boundary of the set Y in E or in E’. The 

sets all(X) a,nd a’(X) are called the parallel and the complement boundaries of the 
prism X respectively. The parallel (resp. complement) boundary of a family of prisms, 

by definition, is the union of the parallel (resp. complement) boundary of all the prisms 

of this family. 

Consider the family c3 = {Cr,t; I EMU, [ EZ??}. Its parallel and complement bound- 
aries are denoted respectively by B and B’. All the set 0, B, B’depend on E’ when 

E is fixed. 

At first we assume that E’ = E*. Then the family 13 covers the whole Rn without 

overlaps and holes, i.e. it is a partition of IR” (cf. [IS]). This partition in called “oblique 

periodic tiling” of Rn in [18] b ecause it is invariant under translations from ;Z’l. The 

union of (t) p risms Cl, I EMI, is a fundamental domain of the group Z?. One can 
regard this union as a rearrangement of the unit cell y. Every k-plane E + cr, where 
E + (Y does not meet B, inherits a unique tiling from the family 0. This tiling, when 

projected on E by the projector along El, is exactly the tiling T, obtained by the strip 

method. 

Now suppose that E’- # E’, then in the family c3 there may have overlaps. For every 

CI we consider the collection of intersections of E + (Y with family 0. 

Theorem 2.1. If C E 13 is a prism such that P = C fl (E + a) is not empty then 
there is a k-facet & of Z” lying in the strip S, such that p(P) = p(Q). A point cy E 

E’ is regular if and only if E + (Y does not meet the parallel boundury B. 

This theorem points out the equivalence between the strip method and the cut 
method. The proof is in fact contained in [18] although only the case El = E’ is 

considered there. 
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From now on we always assume that we have to do with a pair of planes E and E’ 
such that the family 0 has no overlaps. 

The set Ir of irregular points is p’(B) and can be described as follows. Let fl for 

I = (iI,. . . , in-k-l) E Mn-k-l be the (n - k - 1)-plane spanned by ei,, . . . , e:,_k_-l. 

Then the set of irregular points in E’ is the union of (,&) families of parallel 

(n - k - 1)-pl anes, each of the form fl + p’(P) (cf. [18]). Each family is dense in E’ 

but the union of its members has measure 0. 

2.2. Refinements of the family 0 

Suppose that the polyhedra Pf are somehow divided into smaller convex polyhedra, 

p; = @j P,“‘j. Then the prisms Cr are also divided into smaller prisms, 6’1 = Ui!!jCi, 

where Ci = PI + PF”. We spread out this division to other prisms of c3 by translations. 

Instead of 0 we get a new family a = {Ci t t 1 I E Mk, j = 1,. . .,j(I), t E P}. 

Let fi be the parallel boundary of the new family a. A point Q is called regular with 

respect to d (or to fi) if E+a does not meet 6. We color the prism Ci by color j and 

spread out the coloring to other prisms of 6 by translation. Then each regular (with 

respect to 6) cr defines a colored tiling, called the quasiperiodic colored tiling defined 
by (Y. 

The set of irregular points with respect to 6 is G = p’(B). 

Proposition 2.2. Suppose E’ is totally irrational. If (P, j) is a colored polyhedron 
congruent to (Pl,j) and its vertices lie in p(F) then there is a unique colored prism 

C from the refinement 0 such that p(C) = P and the colors of C and P are the same. 

Proof. This proposition follows immediately from the construction. The uniqueness 

follows from the total irrationality of E’. Cl 

The colored prism C in this proposition is called the lift of the colored polyhedron 
P. If T is a colored tiling of E such that it has the same set of prototiles as T, then 

after a shift we may assume that all the vertices of T are in p(Z:“). Then all the tiles 
of T have lifts. The family of lifts of all the tiles of T is called the lift of T and will be 

denoted by LT. Sometime we also use the notion CT for the union of all the prisms of 

family CT. 
A section R will be referred to as a k-dimensional surface in Rn such that the 

restriction of p on R is a homeomorphism between R and E. If this section does not 

meet the parallel boundary fi of the refinement then by projecting the intersections of 

R with the family 6 and preserving colors we get a colored tiling of E. The lift of this 

tiling is the set of all prisms from 6 meeting R. This tiling may be not quasiperiodic. 
Btit it is easy to see that every star of this tiling is the same as the star of a colored 
tiling T, with an a regular with respect to 8. 

Proposition 2.3. Let ZT be the lift of a colored tiling T. Suppose that for every finite 
number of prisms D1, . . . , D, of LT the polyhedra p’(Dl), . . . , p’(D,) in E’ have a 
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common interior point. Then T is a quasiperiodic colored tiling, that is, when ignoring 

colors T E 7,. 

Proof. We number the prisms of the refinement 6 = {Cl, Cp, . . .} in such a way that 

for every r the disk U, with center at 0 and radius r in E is covered by the first 

Y prisms, here N depends on r. Because the polyhedra p’(C,),p’(C2), . . . ,p’(C,) 

have non-empty interior intersection, the intersection of these polyhedra is an (n - k)- 
dimensional polyhedron. There is a regular (with respect to 6) point (Y,. belonging to 

the interior of this polyhedron. By the construction the colored tiling defined by Q, is 

the same as T inside U,. We can choose rl, 73,. . . which tends to infinity. Then the 

quasiperiodic tilings defined by cr,, converge to T. 0 

We shall construct a local rule such that any colored tiling satisfying this local rule 

is a tiling defined by some section not meeting l!3. This local rule depends on the 

refinement of 0. Then we shall choose a refinement of 0 such that every section not 

meeting the parallel boundary defines a quasiperiodic tiling (the previous proposition 

is a criterion). This is the second part, more difficult. 

The first problem is solvable for any refinement. Suppose a refinement 6 is fixed. 

Denote the set of all star-configurations of tilings from 7~ by A. This set is finite up 

to a congruence, and it defines a local rule of vertex type. It is easy to see that if p is 

regu1a.r then the colored tiling Tp satisfies this local rule. The local rule A is called the 

local rule defined by the refinement 6. 

Theorem 2.4. Suppose that E’ is totally irrational. Then every colored tiling satis- 

fying the local rule defined b y a refinement 6 is a tiling defined by some section not 

meeting the parallel boundary of this refinement. 

Proof. Suppose a colored tiling T satisfies the local rule d, and CT is its lift. Let v 
be a vertex of T and PI,. . . , P, be the tiles incident to V. Then the lifts of these tiles 

must have a common point G because the collection of these lifts is a translation of 

t,he corresponding collection of lifts of a star-configuration of T,. More precisely, the 

intersection is an (n - E)-dimensional polyhedron. We have also p(G) = u. We now 

refine the polyhedral structure T of E into a simplicial structure by simply putting in 

some diagonal facets of every tile of T. By means of v * V and linearity we take E up 
into JR:” and get a simplicial complex !? which is a &dimensional surface lying in CT 

and is the surface to find. 0 

Remark. This theorem holds true without the assumption that E’ is totally irrational. 

3. Some technical constructions 

From now on we assume that n = 2L, E’ = E and that the following conditions hold: 

(*) The family 0, generated by E and E is non-overlapping. 

(**) Every AJ vectors from e{, . . . , ek are linearly independent. 
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In fact these assumptions are not essential, but without them the proof would be 

technically more complicated. 

3.1. Completeness 

Proposition 3.1. If v is a rational vector then the 2-plane F spanned by p(v) and 

p’(v) is rational. 

Proof. Since E and % are quadratic, both p(w) and p’(v) are also quadratic. If p(v) = 

a + bfi with rational vectors a, b then it is easy to check that p’(v) = a - bfi. Then 

F is spanned by a and b and hence is rational. Cl 

Quadraticity of E means the following: 

Proposition 3.2. There exist rational 2-planes HI,. . . , Hk+z in lRn such that: 
a) dim(H; rl E) = dim(H; fl fi) = 1. 

b) There are no linear transformations q5 of Rn such that 4(H;) = Hi for i = 

1 ?‘“, k-t-2 and+(E)=E. 

Notice: Rationality of H; is very important. 

Proof. E is spanned by 2k vectors a; + bifi where a; and bi are rational vectors. By 

Proposition 1.1 the 2k vectors a;, 6; are linear independent. Let Hi for i = 1,. . . , k is 

spanned by a; and b;, Hk+r by ‘& a; and c;“=, b;, and finally Hk+z by al + b2 and 
Da2 + br . Then obviously a) is fulfilled. Suppose C$ is a linear transformation satisfying 

the conditions of b). Then 4(H; II E) = H; n 2. The set H; n E is the line spanned by 
a; + bifi while Hi nti is the line spanned by a; -b&D. After resealing we may assume 

that qb(al + blfi) = (al - bl&?). Let for i = 2,. . . , k d(a; + b;JD) = X;(a; - Z&D) 
where X; are real numbers. Then 

d(k(ai t bifi)) = al - blJ;? t e(a; - b&7). 
i=l i=2 

This vector must be colinear with ‘&(a; - bifi). It follows that X2 = . . . = XI, = 

1. But in this case d(Hk+2 fl E) is not Hk+x fl E. 0 

A system of 2-planes HI,. . . , H, which contains a subset satisfying the conditions 
a), b) of this proposition is called a complete system for E and E. 

Let F; be the 2-plane spanned by e; = p(~;) and e: = P’(Ei) for i = 1,2,. . . , k. Then 
dim(Fi n E) = dim(F; n E) = 1, and each F; is a prism. The system Fl, Fz, . . . , F2k 

may be complete or not. 

Remark. The completeness of this system is equivalent to the existence of weak local 

rules in the sense of Levitov (cf. [15]). Note that the “completeness property” is “open” 
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in the sense that if Hr , . . . , Hk+z are complete and Hi,. . . , Hi+, are 2-planes satisfying 

a) and very close to HI,. . . , H1;+2 then the system Hi,. . . , HL+, is also complete. 
If the system Fr, . . . , F2k is not complete, by Proposition 3.2 we can add some extra 

rational 2-phneS Fzk+l,. . . , F, such that there are L + 2 2-planes from Fl, . . . , F, 

which form a complete system. We can choose &+I,. . . , F, such that for each J = 

(.A,.** ,jk-1) with 1 6 jr < ... < j&r < m all the ‘L-planes Fj,, . . . , FJ~_~ are in 

generic position, i.e., dim Fj, + . -. + FJ~_~ = 2L - 2. Fix such Fzk+r,. . . , F,. Let A? 

be the set af multi-indices (jr,. . . ,jk-1) such that 1 < jr < j, < . . . < jk-I < m. 
For each J = (jl,... ,jk_l) E h;r let HJ be the plane spanned by Fj,, . . . , Fjk_,. The 

dimension of HJ is 2k - 2. Denote hi = I, h$ = I’. It is easy to see that 

each HJ is a prism and HJ = hJ + h’,. 

Proposition 3.3. a) 1f p’(t) E I’ where < E Z?” then t E HJ. 

b) If p’(C t HJ) = p’(q + HJ) for [, 7 E En then 5 t HJ = 71 t HJ. 
c) If the projections of H_T, i- El,. . . , NJ, -1 tp on E (for [i E Z”) have non-empty 

intersection then the planes HJ, + e1,. . . , HJ,, + tp also have non-empty intersection. 

Proof. a) First note that if v is a rational vector then p(v),p’(v) are quadratic and 

p’(v) = p(v). So that 11; = /F J- If P’(J) E /(I then ~(8 E b, and t = p’(t) i- p(F) E 

(hi + h>) = HJ. 
b) This is a corollary of the previous. 

c) We need only to prove that if A and R are two planes, each is a prism, A = 

.Y + v, B = Y t w where X,Y are rational planes and V, w are rational vectors then 
p’( A n B) = p’(A) n p’(B). Suppose p’(A) IT p’(B) # 0. Since A, B are prisms we have 

A n B = [P(A) n p(B)1 t [P’(A) n P’(WI. 
It suffices to prove that p(A) n p(B) # 0. 

p'(A) = P'(X) t P’(V), P’(B) = P’(Y) + P’(W). 

Two planes p’(A) and p’(B) have non-empty intersection if and only if p’(v) - p’(w) 

belongs to the planes p’(X) + p’(Y). B t u in that case by conjugation (changing fi 

to -a and vice-versa) we see that p(v) - p(m) belongs to p(X) t p(Y), i.e., p(A) 

and p(B) have non-empty intersection. 0 

3.2. Bootstrapped property 

Definition. Three sets X, Y, 2 are called bootstrapped if X n Y = Y 0 2 = 2 n X. 

Suppose HI, Hz, H3 are three rational (2k -- 2)-planes in Rn satisfying: 

a) dim(HinE) = dim(H;nfi) = k-1, in particular, each Hi is a prism, i = 1,2,3. 

b) HI, Hz, H3 are bootstrapped and H = HI n Hz is a (2L - 4)-plane. 
Let H* be the orthogonal complement of H, and F be the projection of Zn on H* 

(taken along H). Then H’ is a rational 4-plane and F is a 4-dimensional lattice in HI. 
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Put 

where (i,j,l) is a permutation of (1,2,3). Then each I; is a discrete lattice in H’-, 

and all its elements are rational. Let 3-1; = Hi + I;. This is a locally discrete family of 

(2k - 2)-planes in IRn. Here local discreteness means that every compact in R” meets 

only a finite number of planes from this family. This follows from rationality of H; and 

Ii. The set H; obviously contains the lattice Z?. 

Proposition 3.4. Three sets ‘H;, i = 1,2,3 are bootstrapped. 

Proof. It suffices to prove that three sets 7-1; n H’ are bootstrapped. This is the case 
n = 4, k = 2 which was considered in [13] and we refer the reader to that paper. 0 

4. Existence of local rule 

4.1. The construction of the refinement 

Consider (2k - 2)-planes HJ. For each J E a there are many pairs (Jz, Js), both 

are in M, such that the triple Hr = HJ, Hz = HJ,, H3 = HJ, satisfy the conditions 

a) and b) of Section 3.2. By the construction there we can get rational discrete groups 

rl, rz, r3. Let 

‘F1.J = u (HJ + I,) 
J2 ,J3 

where J2, J3 belong to h;l such that the triple HI = HJ, Hz = HJ,, H3 = HJ, satisfy 

the conditions a) and b) of Section 3.2 and Ir is the group constructed there. Put 

7-f = UJti~, Cp = p’(W), @.I = p’(7-f~). Each 3-1 J is a locally discrete family of parallel 

(2k - 2)-planes in lRn, while @J is a dense family of (k - 1)-planes in i?. 
Now we return to the family 0 and its prisms. If CI,~ is a prism of 0 where I E Mk 

and 6 E 7~~ then p’(Cr,t) is a polyhedron in E. Facets of this polyhedron are (k - 1) 
dimensional polyhedra, each facet lies on some (k - l)-plane p’(H) where H is a (2k - 2) 

-plane from UJ~M~_~ (HJ + ZF). For a fixed J E Mh-1 there are only a finite number 

of prisms C from 0, up to translations from .Zn, such that one of the facets of p’(C) 

is lying on h’, (= p’( HJ)). Suppose Cr , . . . , C, are representatives of these prisms: 

~(PYG>) n hl, is a (k - 1)-dimensional polyhedron for i = 1,2,. . . ,p and if C is a 

prism from 0 and a(p’(C)) n h; is a (k - 1)-dimensional polyhedron then C = C; + v 

forsomei E {1,2,..., p} and u E ( HJ n .P). Let dJ be the maximal Hausdorff distance 

between p(C;) and p( HJ) for i = 1,2, . . . ,p, and d = maxJEMk_, dJ. Let U be the ball 
in E with center at 0 and radius d. The following proposition is obvious: 

Proposition 4.1. Suppose C is a prism from c3 such that one of the facets of the 
projection of C on E is lying in the projection of HJ + [ where J E &I and f E Z? 
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then the distance between the projections of C and HJ + [ on E is less than d. Other 

words p(C>n[p(H~)+ U] # 0. 0 

A set W = H + U where H is a (2k - 2)-plane from ‘F1 is called a big wall. Let, 

W = ?_I + CT, this can be considered as the family of all big walls. This family of big 

walls is locally discrete. A big wall W = H + IJ is contained in a unique (21? - I)-plane, 

it is H + E (= W + E). 
Now we construct a refinement of the 0 as follow. For a fixed I E MI, the prism Cl 

meets only a finite number of big walls Wr, I&‘,, . . . , W,. The projections p’( Wi), i = 
1,2,... ,p are (k - 1)-planes in a, they partition the polyhedron ~‘(15’1) = Pf int,o 

smaller polyhedra Pjlj,j = 1,2,. . . ,j(I). Using this partition we define a refinement 
8 of the (3 and the corresponding local rule as in Section 2.2. The parallel boundary 

of the b is denoted by fi. A direct consequence of the construction is that all the 

big walls are contained in fi. We shall prove that the local rule thus defined always 

enforces quasiperiodicity. Due to Theorem 2.4 it suffices to prove that every section 0 

not meeting g defines a quasiperiodic tiling. 

4.2. Orientation of hyperplanes from 6 

From now on we fix a section R in IRn not meeting fi. Let R(z) for z E E be the 

point of fl lying upon z, R(z) = R n p-‘(x), and p(x) = p/(0(z)). We can regard 0 

as the graph of the map p : E --f E. 

A (k - 1)-plane h in E is called oriented if one open half-space of E separated 

by 11 is marked, called the positive half-space of this oriented hyperplane h. We say 

that a point 2 E E is greater than this oriented hyperplane (z > h) if 2 belongs t,o 
the positive half-space. The notion z > h means z > h or 2 E h. For a set X the 

notion X > h means x > h for every x E X. A family of oriented hyperplane in fi 

is compatible if the intersection of their positive half-spaces is not empty. A family of 

parallel oriented hyperplanes is said to have the same direction if the intersection of 

the positive half-spaces of any two of them is a half-space. 

Suppose W = H + U is a big wall, where H is a (21c - 2)-plane from ‘R with 

II = p(H), h’ = p’(H). Then p’(W) = h’ and p(W) = h + 17. The set p( h + U) .= 

UzE(h+l,j p(z) is a connected set lying in E. 

Proposition 4.2. The set p(p(W)) d oes not meet the hyperplane h’ = p’(W) for 

every big wall W. 

Proof. Suppose y E ~(h + U) n h’. Let y = p(z), where 2 E (h + U). Then 2 + y 

belongs to (h + U) + h’ = W. From the other hand, z + y = 2 + p(z) belongs to 0. 
This is a contradiction because 0 does not meet any big wall. 0 

The set P(P(W)) is a connected set, hence it lies in one half-space of E separated 

by h’ = p’(W). W e orient every hyperplane h’ = p’(W) (for every big wall W) such 
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that p(p(W)) > h’. Note that by Proposition 3.3b two different big walls have different 

projections on E. By this way we orient all the hyperplanes from @ = p’(X). 

4.3. Bovndedness oJp(E) 

The following proposition is a generalization of an (unpublished) result of Levitov. 
The proof is also a generalization of Levitov’s proof. 

Proposition 4.3. The map p is bounded: the set p(E) is a bounded set in ti. 

Proof. First note that if the distance between 2 and y (both are points in E) is 

less than 1 then the distance between p(z) and p(y) is less than a constant cl, not 

depending on z and y. This follows from the fact that R is lying inside the union of all 

prisms from LT. 

Lemma 4.4. Suppose J E fi. There is a constant c such that for every (k - 1)-plane 

h in E parallel to hJ the set p(h) 1 ies in the c-neighborhood of a (k - 1)-plane in E 
parallel to h>. 

Proof. Let V be the set p’[( HJ + Z:“) II p-r(h+ Ur,J where I!J,,, is the ball in E with 
center at 0 and radius l/2. The set V is a discrete family of parallel (k: - 1)-planes in 

E, parallel to h’J while the set ~(HJ + F) is a dense family of parallel (Ic - 1)-planes 

in E. It is easy to see that the distance between two neighboring hyperplanes from V 
is less than a constant ~2. The set X = p(x + 171/z) where z is a point of h is bounded, 

and the diameter of X is less than 2cr. If H = HJ + t where 6 E Zn such that p(H) 

meets (x •l- U) then there is a point of X greater than p’(H). So that if in addition 

X does not meet p’(H) then X > p’(H). Let hi, h’, be two hyperplanes from V such 

that X lies between these hyperplanes and every hyperplane from V lying between 

them must meet X. The distance between hi and hk is less than 2cr t ~2. Suppose 
that Hr, H2 are two (21c - 2)-planes from HJ + 7/Y such that h: = p’(Hj) for j=l, 2. 

Let hj = p(Hj). By definition p’(p(hj)) > hi. S ince the distance between h and hj 
(for j = 1,2) is less than 1, p’(p(h)) 1’ res between two (Ic - 1)-planes 11 and Z2 where 

11 (resp. 12 ) is the (L - 1)-plane in E parallel to h>, lying in the unmarked half-space 

of h’, (resp. hk) and having distance to h: (resp. hk) equal to c (see Fig. 1, Zr,Z2 are 

figured as punctured lines). The distance between 11 and 12 is less than 3cr + 2~2. 

Proof of Proposition 4.3. From the family Fr, F2,. . . , F, we choose k t 2 planes 
which form a complete system. For simplicity assume that they are FI, F2,. . . , Fk+2. 

Let 5; E F; be rational points, z; # 0, i = 1,2,. . . , k + 2. Put a; = P(Q). Then 
I = p’(zi) and I;;: is spanned by vi, Vi. There must be k vectors, say ~1,. . . ,ok from 

{Vl ,‘“, Q+~} which span E, because otherwise Fl, . . . , Fk+2 would not be complete. 
Suppose ak+r = xi=, Xjuj. Then Xj must be quadratic numbers. By changing scale 

of the type vj + Xjvj if Xj # 0 and after a permutation we may assume that ~lk+r = 
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Figure 1. 

u1+* * *+ up for some p, 1 < p < k. In this new base suppose 21k+2 = Cs=r pLjvj, pLj E W. 

Then Vk+r = vl + . . . + i$, and @+2 = c,“=, &Vj. 

Completeness means that (~1 : p2 : . . . : pp) # (gl : p2 : . . . : p,). 111 fact, on the 

contrary, if (pi : p2 : -.. ,pp) = (PI : g2 : . . . : &,) the linear transformation 4 defined 

_ 

%+Q) = { &.)/l’j 
forj<porpj=O, 
in other cases, 

satisfies #J(F;) = F; and d(E) = E, a contradiction. 

We suppose, for example, that (~1 : ~2) # (111 : j&). We use (‘VI,. . . , Wk) as the 

base of E and (Cl,..., &) as the base of E. Every point z E Rn has coordinates 

(%--,ak,h,. . . , bk). The map p in this coordinate systems can be written by k func- 

tions 

/+I,.. +k)= (bl(al,...,ak),...,bk(u,,...,uk)). 

The (k - 1)-plane spanned by ~2,213,. . . , Vk is defined by the equation al = 0, and 
the (k - I)-plane spanned by 25,213,. . . , 6k is defined by the equation br = 0. By 

applying Lemma 4.4 to J = (2,3,. . . , k) we see that there is a function fr on E, 
depending only on al such that br(ur, . . . , ak) E fi(ul). Here the notation f z g mea.ns 

that If - 91 < const for functions f,g on E. Similarly for some function f2 we have 

bz(a1,. . * 7 a) = f&z). 

The (k -. 1)-pl ane going through ~3, v4, . . . , Vk, Ok+1 is defined by the equation al - 

ILL = 0. By applying the lemma to J = (3, . . _ , k + 1) we ha,ve 

f&l> - f2(a2) = f(Ul - u2) 

for some function f. Put a.2 = 0 we get fr(ur) - f(ul), similarly f2(u2) - -f(-uz), 

and so f(ur ) •t f( -u2) = f(ur - ~2) or 

f(z t Y) z f(x) t f(y), for Z,Y E R. 

Besides if 12 - y/I < 1 then If(x) - f(v)1 < const. From this and the above property 

it is easy to prove that for a fixed constant c we have cf(z) G f(cz). It follows that 
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h(x) 5% f(z) = f2(4. 

The (k - I)-pl ane going through vg, v4,. . , , vk, vk+2 is defined by the equation p2al - 

1~1~2 = 0. The (k- 1)-plane going through ~3, Ed,. . . , Vk, 21k+2 is defined by the equation 

Paa1 - Pra2 = 0. Applying the lemma to J = (3,4,. . . , k, k + 2) we have : 

P2f@l> - Plf(U2) = 9(Cl2Q - w2) 

for some function g. Put u2 = 0 we get &f(ur) E g(p2ul) or (fi2/~2)f(j,~~u~) E g(p2uI). 
Put al = 0 we get (pr/pr)f(x) E g(z). Hence 

(/32/~2)f(5) - (PllPl)f(4. 

Since (~1 : ~2) # (PI : p2) we have f(z) z 0 or the function f is bounded. This also 

means p is bounded. Cl 

4.4. System Q, of hyperplunes is compatible 

Proposition 4.5. Suppose thut 115 = p’( Hj) for j = 1,2,. . . , p, where Hj are (2k - 2)- 

planes from 3-1, have common points. Then they are compatible. 

Proof. By Proposition 3.3 there is a point y belonging to all Hj. Let 2 = p(y), then 

by definition the point p(x) is greater than all hi. 0 

Proposition 4.6. Suppose HI, Hz are two (2k - 2)-planes from HJ for some fixed 
J E &?. Then h’, = p’(Hr) and hb = p’(Hz) are compatible. 

Proof. We consider two cases: a) HI is contained in HJ + Zn and b) HI is not 

contained in HJ + En. 
a) Suppose HI = HJ + [, < E P, and suppose that h’, = p’(Hr) and hk = p’(H2) 

are not compatible. 

By definition there are two indices Jz,Js E &I such that HJ, f~ HJ, = HJ, n HJ, = 

HJ, n HJ, = H, here J1 = J and if l?r is constructed as in Section 3.2 then there is 

7 E Pr such that Hz = HJ + 7 (see Section 3.2).The groups Tr, r2, r3 are constructed 
as in Section 3.2. Note that since ZY is in HJ + rI, HI also is in HJ + rl. From the 

bootstrapped property of ( HJ, t r,), (HJ, + r,), (HJ, + I’,) it follows that there are 

(k - 1)-planes from p’( HJ, t I?,), p’( HJ, + I’,) located just as on Fig. 2. 
This figure is written in the orthogonal complement (p’(H))l of p’(H)) in E (the or- 

thogonal plane is 2-dimensional). Here two shadowed lines are hi, hi, or more precisely 
the intersections of hi, hi with the orthogonal complement (p’(H))l. The shadow in- 

dicates the orientation: the shadowed half-space is positive. All the other lines of this 

figure are intersections of (k - 1)-planes from ~‘(HJ, + I?,), ~‘(HJ, + I’s) with the or- 

thogonal complement (p’(H))‘. All the intersection points here are triple, this is the 

bootstrapped property. Through point A,, there is a line from ~‘(HJ, + I’,), and there 

are two possibilities of its orientation as indicated in Fig. 3. 
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Figure 2. 

Figure 3. 

Figure 4. 
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Figure 5. 

We consider only the first case because the second is quite similar. In this case by 

Proposition 4.5 the orientation of the line from ~‘(HJ, + I’s) can be found and must 

look lie in Fig. 4, because the three lines going through A0 have to be compatible. 

By using this proposition again one sees easily that all the lines going through A;& 

have the same direction. This would contradict to the fact that p(E) is bounded. 

b) We have proved that any pair of hyperplanes from ~‘(HJ + Z:“) are compatible. 

Note that the projection ~‘(HJ + 27,“) is a dense family of parallel (k - l)-planes. If h’, 

and h’, are not compatible then we choose a (2k - 2)-plane from HJ + .Zn such that 

p’(Hs)lies between hi and hi. Thenoneoftwopairs (p’(H3),p’(H1)),(p’(H3),p’(H2)) 

are not compatible, that contradicts the part a). 0 

Corollary 4.7. For each J E &.f there is a unique (k - 1)plane 1~ in l?I such that 
ZJ 2 p’(H) for every (2k - 2)-plane H from HJ. 

Proof. Since p(E) * b 1s ounded there are at least two (k - l)-planes from p’(?f~) which 

have not the same direction. From this and the previous proposition one gets the 

corollary immediately. Cl 

Proposition 4.8. There is a point cr E %I greater than all the (k - 1)-planes from 

P’(J-0. 

Proof. We can choose J1, Jz, . . . , Jk such that h’J,, . . . , h>k lie in gener&l position. 

Then k planes 1 J1, 1 Jz, . . . , 15, interSeCt at a point a. 

We shall prove that a 2 p’(H) f or every (2k - 2)-plane H from ‘H. It suffices 

to consider the case when H is in ffJ + Z” for some J E fi (as in the proof of 
Proposition 4.6b). Suppose H = HJ + [ for [ E ZY and J E A?. Let Ej, j = 1,. . . , k 
be hyperplanes going through cr and parallel respectively to EJ, . The hyperplanes h’ = 

P’(Wdl, b, * * . , ik bound a k-simplex s where cr is one of the vertices (on Fig. 5, where 

k = 2, the simplex s is a triangle). 
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The (k - I)-facet s of this simplex, opposite to the vertex Q, is some (k - l)- 

dimensional simplex. Since p’(Zn) is dense in h’ there exists a point z lying in s (see 

Fig. 5). Through the point z go k hyperplanes from respectively GJ~, . . . , G.J~. Through 

5 also goes h’. By applying Proposition 4.5 to these k + 1 hyperplanes we see that the 

point cy is greater than h’. Cl 

4.5. Main Theorem 

For a prism D of the refinement 6 its parallel boundary is ap’( 0) + p( 0). The first 

term is the union of all the facets of the polyhedron Q = p’(D). We shall call the sum 

of a (k - l)-dimensional facet of Q and p(D) a small wall of D. Then g is the union 

of all the small walls. The projection of a small wall on & must lie in the projection of 
some big wall. 

Proposition 4.9. If a small wall w of a prism D has a projection on E lying in the 
projection of a big wall W then w and W have a non-empty intersection. 

Proof. D is a part of a prism C of the original family 0. Then p’(D) is a polyhedron 

lying in the bigger polyhedron p’(C), and p’(w) is a facet of p’( 0). There are two 

cases: 

a) p’(w) does not lie in any facet of p’(C). Then by the construction of the refinement 

this means that the big wall W must meet the prism C, and it follows that w and W 
have a non-empty intersection because p(m) = p(C) h as a non-empty intersection with 

P(W). 
b) p’(w) lies in a facet s of p’(C). By definition of lJ, the sets p(C) and p(W) have 

a non-empty intersection. So do p(D) and p(W), because p(C) = p(D). We conclude 

that w = p’(w) + p(C) must intersect W = p’(W) + p(W). Cl 

Proposition 4.10. Suppose that D is a prism of the lift LT. Then the polyhedron 
p’(D) contains the point cx of Proposition 4.8. 

Proof. p’(D) is a polyhedron whose facets are lying in hyperplanes from @. It suffices 

to prove that if s is a facet of p’(D) and s lies in h’ = p’(H) where H is a (2k - 2).- 

plane from 7-f then p’(D) > h’. In this case s + p(D) is a small wall. By the previous 
proposition it has non-empty intersection with the big wall H + U. Let y be a point, 

belonging to both s + p’(D) and H + U, and 5 = p(y). Then p(z) is contained in the 

interior of p’(D) and p(z) 3 h’ by Proposition 4.2. So that p’(D) 2 h’. Cl 

Now we are ready to prove the following: 

Theorem 4.11. If R is a section not meeting the parallel boundary g of the refine- 
ment then the tiling To defined by R is a quasiperiodic associate with E. 

Proof. If the point cy of Proposition 4.8 is regular then by Proposition 4.10 the tiling 

Tn must coincide with T&, and we are done. 
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Suppose (Y is not regular. By Proposition 2.3 we need to prove that if Dr, Dx, . . . , D, 

are prisms from the lift CT then the polyhedra p’(Dr), p/(02), . . ., p’(D,) have a 
common interior point. By the previous proposition Q belongs to all these polyhedra. 

Suppose o lies on the boundary of each of p’( Dj) for j = 1,2,. . . , q and o is interior 

point of p’( Dj) for j = q + 1,. . . , p. There are facets of p’( Dl), . . . , p’(D,) on which 

lies cr. These facets lies on hyperplanes from Q going through o. By Proposition 4.5 

these hyperplanes are compatible. The intersection of all the positive half-spaces of 

these hyperplanes is an open set in E which contains points arbitrarily close to o 
(the intersection is a “corner” with vertex o). We choose a point x very close to (Y 

and belonging to this intersection. Then z is an interior point of all the polyhedra 

P'(&),-vp'(D,). 0 

From Theorems 2.4 and 4.11 we obtain the main result: 

Theorem 4.12. Suppose E is a totally irrational, quadratic k-dimensional plane in 
the Euclidean space IR21c, equipped with a standard base, and suppose the conditions 

(*) (**) are fulfilled. Th en there is a colored local rule A such that 

i) Every quasiperiodic tiling T associated with E, that is T E ‘TE, can be colored 
in such a way that the resulting colored tiling satisfies the local rule A. 

ii) Conversely, every colored tiling T satisfying local rule A is a quasiperiodic tiling 
associated with E when ignoring the color, T E 7~. 

Remark. The theorem holds true without the conditions (*) (**) but the proof in this 

case is technically more complicated. 

An example is the case of 3-dimensional Penrose tilings with icosahedral symmetry 

(cf. [9]). In th is case k = 3, n = 6, E is totally irrational and quadratic. Moreover, 

E’ = El and conditions (*) ( ) ** are fulfilled. Hence the class of all S-dimensional 

Penrose tilings with icosahedral symmetry admits local rule (with decoration) of vertex 

type. 
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