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Abstract 

Let 2, be the universal Vassiliev-Kontsevich invariant for framed links in [ 131, which is 
a generalization of Kontsevich’s invariant in [IO, 11. Let K be a framed knot and K(‘) be its 
r-parallel. Then we show .?f(K(‘)) = &(2/(K)), where dc,) is an operation of chord diagrams 
which replace the Wilson loop by I copies. We calculate the values of .??f of the Hopf links 
and the change of .?f under the Kirby moves. An explicit formula of an important normalization 
factor, which is the value of the trivial knot, in the universal enveloping algebra U(g) of any 
Lie algebra is given. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: Primary 57M25, secondary 17B37 

1, Introduction 

Kontsevich found an invariant 2 of knots with values in the chord diagram algebra 

&‘o which is as powerful as the set of all Vassiliev invariants (invariants of finite types). 

This invariant is now called the universal Vassiliev-Kontsevich invariant, although it 

is not of finite type. We can also recover many knot invariants coming from quantum 

groups from 2. So it may be very natural to think about extending 2 to 3-manifold 
n 

invariants. Towards this goal, we extended Z to an invariant of framed links in our 

previous paper [13]. In the Reshetikhin-Turaev construction for Witten’s 3-manifold 

invariant in [ 181, the tensor product structure of a certain category plays an important 

role. In Lickorish’s construction in [15], invariants of parallel links take the same 

role. Here we would like to prove the formula for the universal Vassiliev-Kontsevich 

invariant of parallel links, which was announced in [14, Theorem 41. 
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This formula would be useful to study 3-manifold invariants related to the universal 

Vassiliev-Kontsevich invariant. We discuss the group-like property of jr, which is 

closely related to the parallel formula (for knots this property had been known in 3). 

Then we calculate the values of the universal invariants of the Hopf links and the 

tangles that express the Kirby moves. These values are expressed in terms of an 

element v which is the value of the universal invariant of the trivial knot. We also 

give a proof of a Theorem announced in [ 14, Theorem 111. Finally, we give a for- 

mula which describes the element v in the universal enveloping algebra of ~12 through 

Bernoulli polynomials on the Casimir central element. Generalization for other simple 

Lie algebras is given. 

The definition of universal invariants involves a special element, called an associator, 
an analogue of associators that appeared in Drinfeld’s theory of quasi-Hopf algebras, 

although we do not have any quasi-Hopf algebra. In order to establish the formula 

of parallel version of tangles in the most general form, we have to use a special 

“associator” (see Section 3) which possesses more symmetry than the well-known 

associator derived from the Knizhnik-Zamolodchikov equation. The existence of such 

an associator was proved by Drinfeld. We would like to emphasize that the parallel 

formula is not valid for tangles in general, if one uses the associator derived from the 

Knizhnik-Zamolodchikov equation. For links only, one can use any associator, since 

in [14] we proved that the value of the universal Vassiliev-Kontsevich invariant of 

links does not depend on the associators. In practice, very often one has to deal with 

tangles with non-empty boundary. 

2. Preliminary definitions and facts 

We recall some definitions from theory of the universal Kontsevich-Vassiliev in- 

variants for framed oriented q-tangles. For details we refer the reader to [ 13, 141, see 

also [2]. 

Suppose X is a one-dimensional compact oriented smooth manifold whose compo- 

nents are numbered. A chord diagram with support X is a set consisting of a finite 

number of unordered pairs of distinct non-boundary points on X, regarded up to ori- 

entation and component preserving homeomorphisms. We view each pair of points as 

a chord on X and represent it as a dashed line connecting the two points. 

Let &‘(X) be the vector space over the field @ of complex numbers spanned by all 

chord diagrams with support X, subject to the 4-term relation 

D1-D2+D3-D4=0, 

where Dj are four-chord diagrams identical outside a ball in which they differ as 

indicated in Fig. 1 (see [4]). 

The vector space d(X) is graded by the number of chords, and, abusing notation, 

we use the same d(X) to denote the completion of this vector space with respect to 

this grading. 
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Dl D2 03 04 

Fig. 1. Chord diagrams in the four-term relation. 

When X = S’, we denote a(X) simply by d. When X is n numbered lines, d(X) 

is denoted by 9,, (it is denoted by A(“) in [ 131). All the 9, are algebras: the product 

of two-chord diagrams D1 and 02 is obtained by placing D1 on top of D2. The algebra 

9, is commutative (see [l, lo]). 

Suppose C is a component of X. Reversing the orientation of C, we get X’. Let 

S(c) : d(X) + d(F) be the linear mapping which transfers every chord diagram D 
in d(X) to S(c)(D) obtained from D by reversing the orientation of C and multiplying 

by (- l)m, where m is the number of end points of chords on the component C. 

Replacing C by r copies C’, . . . , C’ of C, from X we get X(‘y’), with a projection 

p : X(&‘) + X. If q is a point on C then p-‘(q) consists of r points, while if 

q is a point of other components, then p-‘(q) consists of one point. Let D be a 

chord diagram with support X with n chords; then D has 2n vertices (end points of 

chords); and suppose that m of which are on C. Consider all possible collections of 

2n points on X(‘,‘) whose projection onto X are exactly the 2n vertices of D. There 

are rm such collections; each defines a chord diagram with support X(‘,‘) where the 

pairing of points is corresponding to the pairing of points in D. The sum of these 

rm chord diagrams is denoted by Ac,c)(D). Define d(,c) for every element of z!(X) 

using linearity. For a point q on C other than vertices of D, the inverse image p-‘(q) 
consists of r points; and we remove r small arcs on C”s that contain these points but 

do not contain any points of the inverse image of vertices of D. We mount a chord 

diagram D’ in Yr (whose support is r lines) to the places of the r removed arcs. By 

this way, from Ac,c)(D), we get an element of d(X(‘*‘)), denoted by Ac,c)(D) x D’. 
4 

Lemma 2.1. In the above setting, Ac,c)(D) x D’ does not depend on the choice of 
the point q. 4 

For r = 1, this lemma comes from the proof of Lemma 3.1 in [ 11. Proof for r 2 2 
case is given in the last section. As a corollary of this lemma, we obtain Theorem 1 

of [14] which states that the image of A(,) : 91 + 9, is in the center of 9,. 

For r = 1 (then D’ is in 91 and Acl,c)(D) = D) , we call D x D’ the result of 

action of D’ on D at component C. 4 

If f : X -+ X’ is an embedding, then there is an obvious associated mapping 

f* : d(X) + .d(X’). 

A non-associative word on some symbols is an element of the free non-associative 

magma (see [20]) generated by these symbols. If w is a non-associative word and v1 
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is obtained from w by replacing a symbol in w by another associative word ~2, then 

we say that v2 is a sub-word of vi. 

We fix an oriented three-dimensional Euclidean space lR3 with coordinates (x, y, t). A 

tangle is a smooth one-dimensional compact oriented manifold L c R3 lying between 

two horizontal planes {t = a}, {t = b}, a < b such that all the boundary points are 

lying on two lines {t = a, y = 0}, {t = b, y = 0}, and at every boundary point L is 

orthogonal to these two planes. These lines are called the top and the bottom lines of 

the tangle. 

A normal vector field on a tangle L is a smooth vector field on L which is nowhere 

tangent to L (and, in particular, is nowhere zero) and at every boundary point is given 

by the unit vector in the plane R2(x, t) which together with the tangent vector at the 

boundary point forms the positive orientation of the plane R’(x, t). A framed tangle is 

a tangle equipped with a normal vector field. Two framed tangles are isotopic if they 

can be deformed by a l-parameter family of diffeomorphisms into one another within 

the class of framed tangles. 

We will consider a tangle diagram as the projection onto R2(x,t) of a tangle in 

generic position. Every double point is provided with a sign + or - indicating an over 

or under crossing. 

If U is a tangle diagram, then U defines a unique class of isotopic framed tangles 

T(U): let T(U) be a tangle which projects into T and is coincident with U except for 

a small neighborhood of the double points where one resolves the singularity according 

to the sign there, the normal vector at every point of L(T) is the unit vector which 

is perpendicular to the tangent vector and together with the tangent vector forms the 

positive orientation of R*(x, t). 

One can assign a symbol + or - to all the boundary points of a tangle diagram 

according to whether the tangent vector at this point directs downwards or upwards. 

Then on the top boundary line of a tangle diagram we have a sequence of symbols 

consisting of + and -. Similarly, on the bottom boundary line there is also a sequence 

of symbols + and -. 

A q-tangle diagram U is a tangle diagram enhanced with two non-associative words 

wb(U) and wt(U) such that when forgetting about the non-associative structure from 

wt(U) (resp. Wb(U)) we get the sequence of symbols on the top (resp. bottom) boun- 

dary line. Similarly, a framed q-tangle T is a framed tangle enhanced with two non- 

associative words wb( T) and wt( T) such that when forgetting about the non-associative 

structure from w,(L) (resp. Wb(L)) we get the sequence of symbols on the top (resp. 

bottom) boundary line. 

Suppose U is a q-tangle diagram. A trivial extension of U is another q-tangle 

diagram U’ obtained from U by adding a number of vertical straight lines on the left- 

hand and right-hand sides of U. The non-associative word wt(U’) can be any word 

which contains wi( U) as a subword, and Wb( U’) is obtained from wt( U’) by replacing 

wt(U) by w(U). 
If U,, U2 are q-tangle diagrams such that Wb( Ul ) = wt( Uz), we can define the product 

U = U, x U2 as the q-tangle obtained by placing U, on top of U2. The product is a 
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Fig. 2. 

q-tangle diagram with wt( U) = wt( Ut ), wt,( U) = W( Uz). Moreover, if Di, 02 are two 

chord diagrams in, respectively, &‘( Ui ), &( U2), then one can define the product DID2 
which is a chord diagram with support U = UI UZ by the same rule. 

Let X+,X-, Yf, Y- be q-tangles as in Fig. 2. For any non-empty non-associative 

words ~1, ~2, w let U,, w2w3 be the q-tangle diagram consisting of vertical straight lines 

with wt = wl(w2w3) and wb = (wiw2)ws. Finally, let U&wzw, be the same as U,,,,,,, 
with wt and wr, exchanged. 

Every q-tangle diagram can be decomposed (non-uniquely) as the product of elemen- 
tary q-tangle diagrams which are trivial extensions of the X+, X-, Y+, Y-, UW,W,W,,, 

UTWV, or any of them with inverse orientation on some components. 

To every q-tangle diagram U we will assign an element Z,(U) of d(U) satis- 

fying two requirements. First, if U is the product of U1 and U2, then Z,(U) = 

Zf( U,)Zf( U2). If U’ is a trivial extension of U, then there is an obvious mapping f 

from U to U’. The second requirement is that f*(Z,(U)) = Zf(U’). 

Define Zf(x’), Zf(X-), Zf(Y+), Zf(Y- ), Z~(UW,WzWz ), and Z,$U,&,,,,,) as follows: 

Z#+) = exp(S2/2) = 1 + Q/2 + . . . + & + . . . 

Here 52” stands for the chord diagram in JxZ(X+) with n horizontal chords: 

Q” 
Z,(X-) = exp(-Q/2) = 1 - Q/2 + . . . + ~ 

(-2)“n! +“” 

Zf(Yf) = l,Zf(Y_) = 1, 

where 1 is the chord diagram with appropriate support without any chord: 

Zf (vv,,w, > = d(l,,C,)d([2,C*)d(13,C3)~, 

where li is the number of symbols in the non-associative words wi, C’s are the com- 

ponents of support of chord diagrams in 9’3, i = 1,2,3, and Qi is a special element of 

93 called an associator, which is an analogue of Drinfeld’s associator in quasi-Hopf 

algebras [5, 61. For a definition of associator in our sense, see [14]. There are many 

associators, and we use a special one which is discussed in the next section: 

Finally, if U’ is obtained from U by reversing the orientation of a component C, 

let Zf(U’) = s(~)(zf(U)). 



276 T. T.Q. Le, J. MurakamilJournal of Pure and Applied Algebra 121 (1997) 271-291 

Together with the above two requirements, these define the mapping Zf uniquely. 

The well-definedness of Zf is more difficult to establish. 

Zf itself is not an invariant of framed q-tangles. Let v E 9’1 be an element such that 

VV’ = Zf(Ul), 

where Ui is the first q-tangle diagram in Fig. 5. Note that ZJ( Ui ) is of the form 1+ 

elements of grading > 1 in 91, hence it has a unique inverse in 9’1. Since 9’1 is 

commutative, there are only 2 elements in 91 whose square is v, and we denote the 

one which has the form 1+ higher degree by v’12, 

Let T be a framed q-tangle which is defined by the q-tangle diagram U (i.e., T = 

T(U)). Suppose U has k components, and the ith component has mi critical points, 

i.e. points where the tangent to U is parallel to the plane (x, y). Define 

i,(T) = (Pi2 @ . . . @ v~~‘~) x z,(U), 

where the right-hand side denote the element obtained by successively acting +I2 on 

Zf( U) at the ith component, i = 1,. . . , k. 

Theorem 2.1. The mapping 2,- is well-dejined and is an isotopy invariant of framed 

q-tangles. 

For the proof, see [ 13, 21. For a knot in S 3, there is a natural way to identify the 

set of framings with Z, and we will use this identification. If K is a trivial knot with 

framing 0, then jf(K) = v. If L’ is obtained from L by increasing the framing of 

component C by 1, then Zf(L’) is the result of action of exp(o/%) at the component 

C of if(L). Here o is the only chord diagram in 91 with one chord. 

Remark. (1) Each associator gives rise to an invariant Zf of framed q-tangles. There is 

a slight difference between the definition of Zf here and that of [13, 141. First, we use 

another associator, second, we use another normalization for q-tangles with non-empty 

boundary (this normalization was used in [2]). But for framed links or q-tangles with 

exactly one boundary point on top and on bottom line, there is no difference between the 

definition of 2, here and that of [ 13, 141 ( see Theorem 8 of [14]). For general framed 

q-tangles, this does not hold true. It follows that v is independent of the associator. The 

difference between the values of Z,, when the associator is changed, is described just 

by a simple twist which depends only on the non-associative structure of the q-tangle 

(see Theorem 7 of [14]). 

(2) It is proved [14] that the coefficients of 2, of a framed links are rational, that 

is, if one fixes any base of d(L) consisting of chord diagrams and expresses Zf(L) 

as an infinite series on this base, then all the coefficients are rational. This, in general, 

does not hold true for q-tangles and general associators. 
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3. On an associator of Drinfeld 

By an associator we mean an element @ in 9s satisfying a system of equations (see 

[14]). We record here only two of them: 

d(2,C,)(R) = @9?‘3(@‘32)--1R%, (3.1) 

l&*)(R) = (@23’)-1R13(@213)R’2@-‘, (3.2) 

where Ci are the components of the support of chord diagrams in 9’2, R = exp(S2/2) E 

p2 with Q being the chord diagram with one chord connecting the two components, 

@jk is obtained from @ by permuting the components: Ci to Ci, C2 to Cj, Cs to 

Ck, and R’j = exp(Qq/2) with s1, being the chord diagram in 9s with one chord 

connecting Ci and Cj. 

Let fr(A,B) be the algebra of Lie formal series over the field Q of rational numbers, 

and Fr(A, B) = exp fr(A,B) which is a subalgebra of the algebra Q( (A,B)) of formal 

power series on two non-commuting variables A,B. There is a natural grading on 

Q( (A,@). A deep result of Drinfeld [6, Proposition 5.41, shows that there exists cp E 

Fr(A,B) such that 

cp(-A, -B) = (p(M), (3.3) 

$@,A) = V’(O), (3.4) 

and (p(&,Q23) is an associator. Note that the well-known (pu (see [6, 12, 141) 

derived from the Knizhnik-Zamolodchikov equation does not satisfy (3.3), although it 

satisfies (3.4). Let CJ be the anti-isomorphism of Q((A,B)) with o(A) = A,a(B) = B. 

Lemma 3.1. cp-’ = a(q). 

Proof. We have &A, B) = exp(P(A,B)), where P(A,B) is in fr(A,B). From (3.3) it 

follows that P(A,B) is a sum of elements of even grading. It is not hard to see that 

o([X, Y]) = -[o(X), a(Y)] for any X, Y in Q((A,B)). Every element of even grading 

in fr(A, B) is a non-associative word on A,B with an odd number of Lie brackets. 

Hence, for an element X of fr(A,B) of even grading we have a(X) = -X. Then 

a(P(A, B)) = -P(A, B), and a( cp) = exp( -P) = cp-’ . 0 

From now on we fix cp and use the associator @ = (p(f2~2,5223) in the definition of 

Zf. Then the associator @ is a sum of chord diagrams of even grading. As a corollary 

we see that v has even grading. Note that v does not depend on the particularly chosen 

associator. 

Consider the following symmetry group G of the plane R2(x, t) generated by mirror 

reflections with respect to horizontal and vertical lines. If U is a q-tangle diagram, 

f E G, then f(U) is also a q-tangle diagram. The non-associative structure on the 

boundary points is induced from that of U. Any mapping f E G also defines an 

obvious isomorphism f* between d(U) and &(f(U)). 
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1 

I-:_]+cp] 

a link L = h; U h; 2%parallel of L at h; 

Fig. 3. Parallel of a link. 

Proposition 3.1. For every f in G we have 

Z,,(f(U)) = f*(Z,(U)). 

Proof. It is enough to consider the case when U is an elementary q-tangle. When U 

is one of X+,X-, Y+, Y- the Proposition is trivial. Let U be the q-tangle consisting of 

3 straight lines directed downwards, with the top non-associative word wt = (+(++)) 

and the bottom M+, = ((++)+). In other words, U = U+++. It is enough to prove 

the proposition for U, since all the other UW,W2W3 are obtained from U by various 

actions of A. When f is the reflection with respect to a vertical line, Z,-(U) = @, 

Zf(f(U)) = P’ while the mapping f* is the linear mapping from 9s to itself 

which exchanges the first and the third strings. Now equality (3.4), with a careful 

consideration, shows that Zf(f(U)) = f*(Z,(U)). The case when f is a reflection 

with respect to a horizontal line is similar (though more difficult), using Lemma 3.1 

instead of equality (3.4). I? 

Remark. This proposition does not hold true if we use @p~z instead of @. 

4. Parallel of framed links and chord diagrams 

Let L be an e-component framed link and K,, K2, . , , Kt be its connected compo- 

nents. By adding Y - 1 strings parallel to a component Ki which are the push-offs of 

Ki using the frame, as in Fig. 3, we get an (l + r - I)-component link, called the 

r-parallel of L at Ki and denoted by L(‘K ). 

We will prove the following. 

Theorem 4.1. Let K be a link with components KI , . . . , Km. Then 

.ff(K(r*Kg)) = ACr,&-(K)). 
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Fig. 4. Critical points. 

Remark. The normalization in which the trivial knot takes value v is important for this 

theorem. Change of this normalization will invalidate this theorem. 

We give a proof of Theorem 4.1 for Y = 2 case, since AC,, is a composition of 

(Y - 1) A(2)%. 

For a q-tangle T and its component C, we make the 2-parallel Tc2), (or T(*,‘)) of 

T at component C by adding a string C’ parallel to C with respect to the frame of 

T. The non-associative words w,(Tc2)), m(Tc2)) are obtained from wt(T) and %(T), 

respectively, by replacing the symbol u corresponding to C by the word (uu). Here u 

is a sign + or -. 

Theorem 4.2. In the above setting, one has 

&( TC2,‘)) = AC2,C@f( T)). 

Certainly Theorem 4.1 is a corollary of this theorem. It is sufficient to prove the 

theorem for elementary tangles. The difficulty came only from the case when T contains 

a maximum or minimum point. We will first deal with this case. 

Remark. The above theorem becomes false if we use @u instead of @. See, however, 

the remark after the proof of the theorem. 

Let vi, ~2, ~3, v4 be respectively the value of the non-normalized Zf of 2-parallels of 

q-tangles V,, V2, V3, V4 in Fig. 4. We consider vi, v2,v3, v4 as elements of p2, where 

the inner string is numbered first. It follows from Proposition 3.1 that v1 = v2 = v3 

= v4 = v. 

Lemma 4.1. Let U be a one-component q-tangle diagram with k critical points. One 
has 

Z,( Uc2)) = vk Ac2)(Zf( (I)). 

Proof. Decompose U into elementary q-tangle diagrams. Note that here we use the 

non-normalized Zf, not if. The value of Zf of U comes from the parts which do not 

contain critical points. Now take 2-parallel of the tangle and decompose Uc2) by the 

same manner. Using Lemma 2.1 (which says that the image of A is commutative with 

everything) we can regroup all the contribution coming from critical points, and we 

get the result. q 
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Fig. 5 

z,(vl’“‘) = v2Apj(v-‘) E P2. 

Fig. 6. Deformations of U,‘*’ and Cl,(*). 

Lemma 4.2. The values of v is dejined by the following: 

v = (,-“2 @ v-“2)A(q(v”2). 

Proof. Let Ul,. . . , Us be the q-tangle diagrams depicted in Fig. 5. 

Since zf(Ul) = 2,( U2) = zf( Uj) = Zf(U4) = 1, it follows that 

Zf(U1) = Zf(U2) = Z,(Q) = Z,(U,) = v-l. 

Applying Lemma 4.1, we have Zf(U,‘2’) = v24~(v-‘) E 92. 

(2) Deforming U, into the tangle in the left-hand side of Fig. 6, we see that 

z/QJY’> = v -1 
@a v-‘. 

Here by a @ 6, where a, b are chord diagrams in 91, we mean the chord diagram 

in 9’2 with a on the first component and b on the second component. Hence, we 

obtain: 

v2 = (v-’ @ v-l) d(2)(V). 

Now note that w = (v- ‘I2 @ v-~/~)~~~)(v’/~) is in the center of 93 (see Lemma 2.1 

and the remark after it). One has that v2 = w2, or (v - w)(v + w) = 0. Hence, either 

v = w or v = -w. Considering the 0th grading of both v and w leads to v = w. 17 

Now we can proceed to prove Theorem 4.2. It is sufficient to consider the case when 

T is one of X+,X-, Y+, Y-, UW,,W,,,, U;w2w, described in Section 2. The last two cases 
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follow straightforwardly from the definition of 2/. When T is one of VI,. . , V,, say, 

T = V,: 
n 

z,-( v,“‘) = (v I!* @ v”*)zf( J/y’) = (p @ v”2)u = A(*)(““*) = d(&( V,)). 

That is, the theorem holds true for T = Y+ and T = Y-. 
When T = X+ or T = X-, let us decompose T (*) into elementary q-tangles and 

write out the expression of gy(T), using the definition. Identities (3.1) and (3.2) now 

show that the theorem is true for this case. Theorem 4.2 is proved. 0 

Important remarks. Theorem 4.2 does not hold true if we use the KZ associator 

instead of the above one. In fact, one can easily see that, for the KZ associator, 

ff(d( VI)) contains non-trivial chord diagrams of degree 3, while d(if( VI)) = d(v) 
contains only chord diagrams of even degrees. 

We have used a special associator for the proof of the theorem. For any other 

associator (for which the values of u~,uz,v~,v~ maybe different), one can prove a 

weaker form: Theorem 4.2 remains true for q-tangles T each component of which has 

the same numbers of maximal and minimal points, and hence for all links. In fact, 

a similar argument of the previous lemma, applied to U2,. . , Ug instead of Ur (with 

the deformation of Us in the right-hand side of Fig. 6) would lead to vi = 02 = a, 

v3 = u4 = b and ab = ba = (v-’ @ v-‘)d~2)(v). So the value of a stands for a maximal 

critical point, and b for a minimal point. And for those q-tangles of the above type we 

can always pair a maximal point with a minimal point, and get a proof of the theorem. 

In most applications in this paper (Theorems 4.1, 6.1, 6.2, 6.3) the q-tangles involved 

are of the above type, so these theorems are valid for every associator. 

5. All values of the universal Kontsevich-Vassiliev invariant are group like elements 

We now define a co-multiplication a in d(X). A chord subdiagram of a chord 

diagram D E d(X) is any chord diagram obtained from D by removing some chords. 

The complement chord subdiagram of a chord subdiagram D’ is the chord subdiagram 

obtained by removing chords in D’. Let 

a(D) = c D’ @ D”. 

Here the sum is over all chord subdiagrams D’ of D, and D” is the complement of D’. 

This co-multiplication is co-commutative. The corresponding co-unit E : d(X) + Q 

is E(D) = 1 if the chord diagram D does not contain any dashed chord, otherwise, 

E(D) = 0. 

So far, an algebra structure was introduced in d(X) only for the case when X 

is n lines (in this case d(X) = Y’,). While the co-algebra structure is defined for 

every X. 

It is not hard to see that the co-multiplication is compatible with the algebra structure 

in P,,. Hence, all the 8, are co-commutative Hopf algebra; the antipode is obtained 
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* . . 

@f 

T 

Fig. 7. Closing a tangle. 

by successively applying the mapping S(c), where C runs the set of all the support 

lines. When n = 1 the algebra P)n is commutative, and is isomorphic to &(S’); it was 

first considered by Kontsevich. 

Applying Theorem 4.2 successively to every component of a q-tangle T, then deleting 

all the chords which connect the two copies of T, we get the following. 

Theorem 5.1. For every q-tangle T, the universal Vassiliev-Kontsevich invariant 2, 
(T) is a group-like element in the co-algebra d(T), i.e. 

A[.&( T)] = &(T) @ 2/(T). 

This result is not quite new. After having finished this paper, we learnt that this 

result, for the case when T is a knot, had been formulated and used in [3]. There 

the result is derived from the integral formula of the universal Vassiliev-Kontsevich 

invariant. Note that since one is dealing with framed links and tangles, one must use 

the regularized form of the integral formula, as described in [13]. 

When K is a framed knot, if(K) is group-like in the commutative co-commutative 

connected Hopf algebra &(S’). Hence, if(K) = exp( y), where y is a primitive 
element, i.e. elements x such that a(x) = x @ 1 + 1 @x. It follows that if(K) always 

contains non-prime chord diagrams (which are products of non-trivial chord diagrams), 

even in the case when K is a prime knot. Also, y = log(2f(K)) is primitive; so it is 

an infinite sum of connected Chinese character diagrams (see [l]); and maybe it is 

easier to study log(if(K)) than 2f(K). 

6. Closing a tangle, the Hopf link and the Kirby moves 

Let T be a framed q-tangle with n top and n bottom boundary points. We suppose 

that the non-associative words on the top and boundary points are the same. Now we 

close T as in Fig. 7 to get a link (T). The question now is what is the relation between 

the values of if of T and its closure link. The method using straight definition of 2f 

would lead to very complicated chord diagrams. 

Recall that v = if(Ui) is an element of 81. Let v, = d(,)(v) E P,,. 



T T. Q. Le. J. Murakamil Journal of Pure and Applied Algebra I21 (1997) 271-291 283 

Fig. 8. The Hopf link 

Theorem 6.1. The value of 2r of the closure link can be calculated by the following 

formula: 

.if,(< T >) = 

Proof. We decompose (T) into 3 q-tangles as in Fig. 7. Note that the first and the 

third part are n-parallel of q-tangles of Fig. 4. Applying the 2, to each part and using 

Theorem 4.2 we get the result. 0 

Note that Theorem 11 in [14] is a corollary of this theorem. The fact that v, is 

in the center of Pn explains why 2, is invariant under the second Markov move of 

braids. 

The Hopf link and the Kirby moves play an important role in the search for 3- 

manifold invariants. Here we calculate the value of 2~ of the Hopf link and the 

change of 2r under the Kirby moves. Again, the method using straight definition of 

2~ would give a very complicated chord diagrams. 

Consider the Hopf link in Fig. 8. 

Theorem 6.2. The value of if of the Hopf link is 

where Sz is the only chord diagram in 9~ with one chord connecting the two compo- 
nents of the support. 

Proof. This follows from the previous theorem. 0 
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Fig. 9. The Kirby move. 

Let T be framed q-tangle on the left-hand side of Fig. 9 which depicts the Kirby 

move. Here the band stands for n parallel lines of the same orientation. We assume 

that the non-associative words of the top and the bottom of T are the same. 

Theorem 6.3. The value 2.r of the q-tangle T on the left-hand side of Fig. 9 is 

Here o is the chord diagram in d with one chord. 

Proof. It suffices to prove the theorem for the case when n = 1, since the n > 1 case 

follows from the n = 1 case by applying Theorem 4.2 to the open component of the 

tangle T of the case n = 1. 

Let X = S’ LI S’ and Y be the disjoint union of a line and a loop. Closing the 

open component of Y, we get a mapping f from Y to X which induces a mapping f* 
from d(Y) to d(X). An important observation is that f* is an isomorphism between 

vector spaces. The proof is exactly the same as the proof of d(S’) Z Pi in [l]. 

Denote the element on the right-hand side of the formula in the theorem, with n = 1, 

by a. One has to prove if(T) = a. Both are elements of d(Y). It is enough to prove 

that 

(v @ l)jf(T) = (v @ l)a, 

where multiplication by (v @ 1) means that we take the result of action of v at the open 

component of Y. Since f* is an isomorphism between J&‘(Y) and d(X), the above 

equality is equivalent to 

(V @ 1 )f+@,(T)) = (v @ l)f*(a). (6.1) 

Note that the right-hand side of (6.1) is just dc2)(ew/2v), where 4(z) : d(S’) + 

d(S’ U S’) is defined in Section 2. The left-hand side is 2,((T)), by Theorem 6.1. 

The closure link of T is the parallel of the trivial knot K with framing 1; and it is 
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known that if(K) = e”12v. Hence, formula (6.1) follows from Theorem 4.1, applied 

toK. q 

Remark. When the orientation of some of strings in the band is reversed, one can 

use Theorem 4 of [ 141, combined with this theorem, to calculate the Kirby move. For 

the Kirby move with a negative framing, one needs only to replace w by --o in the 

formula of the theorem. 

7. Element v in the universal enveloping algebras of Lie algebras 

We have seen that the element v is very important in the whole theory of Vassiliev 

invariants. In [ 121 we calculated the coefficients of Drinfeld’s Knizhnik-Zamolodchikov 

associator via multiple zeta values, and a formula for v can be easily derived. Using 

this formula, one can, say, compute some low degree parts of v, or get some estimate of 

coefficients of v. However, that formula may not be practical, since all the coefficients 

of v are rational, while the multiple zeta values are, in general, transcendental; and 

rational relations between multiple zeta values are not known. Here we give a compact 

formula for the image of v in the universal enveloping algebra of a simple Lie algebra 

g under the “weight system” mapping. 

Suppose g is a simple Lie algebra associated to a Cartan matrix. Let us fix a Cartan 

subalgebra h, a base of the root system. There are scalar products on lj and on h*, 

associated to the Cartan matrix. The scalar product on lj defines an invariant scalar 

product on g. 

Denote by A+ the set of all positive roots. Let 6 = i EMEd+ CI. 

Using the invariant bilinear form, one can define a linear mapping p : ??t % d -+ 

j(g)[[h]], where j(g) is the center of the universal enveloping algebra of g; h is a 

formal parameter, as follows. Let gl,. . . ,gk be an orthonormal base of g. Suppose 

D E 91 is a chord diagram with n chords; and hence there are 2n end points of chords 

which, if we follow the line from top to bottom, are ul,a2,, . . , az,,. A state is any 

mapping f : {ul,u2,. . . ,uzn} + { 1,2,. . . , k} which takes the same value on the two 

vertices of a chord. Let 

It is known that p is well-defined, and p(D) is in Q(g) (see [lo, 11). 

We want to calculate p(v). First we consider the case when g = ~12. 

The Lie algebra sZ2 is generated by X, Y, H with relations: [H,X] = 2X, [H, Y] = 

-2Y, [X, Y] = H. The standard invariant bilinear form, which is one fourth of the 

standard Killing form, has the corresponding symmetric tensor t = ;H 159 H +X @ Y + 

YC3X. 

The center ~(~12) is the free polynomial algebra on the Casimir element c. Combining 

p with kf, we get an invariant of knots which are formal power series of h whose 
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nth coefficient is a polynomial of c: 

P&(K)) = E &%I(c)h” 
n=O 

From the definition it follows that the polynomial degree of PK,~(c) is at most n. 

This polynomial PK,~(c) is a Vassiliev invariant of order n. Note that in our setting, 

the value of 2~ of the trivial knot is v. The question about the polynomial PK,~(c), 

when K is the trivial knot, is the question about the image of v in U(sIz). 

Let B,(x) be the Bernoulli polynomial (see, for example, [17]). One has 

&” = [&+i(N+ 1)-&+1(WlI(n+ 1). 
k=M 

(7.1) 

The polynomial B, has order n, and 

B2,+1(1 -xl = -B2n+1@). 

This means Bzn+i( t + ix) = -Bz,,+r (i - ix) is an odd polynomial. Hence, there is 

a polynomial qn(x) of degree n such that 

~ = (2n t 1), [B2n+1(; + ;x>l/x. 

Theorem 7.1. For the trivial knot K, 

PK,2n(C) = 4n(C), pK,2n+l = 0, 

that is, 

P(V) = j?qrdc)h2”. 
n=O 

Proof. Let V, be the unique irreducible of ~12 of dimension m. The Casimir c in this 

representation is (m2 - 1)/2 times the identity. Hence, trv,,, ck = m((m2 - 1)/2)k, and 

trV,,, PK,n(C) = mpK,dh2 - 1)/2). 

By Theorem 10 and formula (12) of [14] (see also [9, Theorem xX.8.31, and [ll, 

12]), trv,,,(p(zf(K))) is the invariant of knot obtained using the quantum group ap- 

proach as in [ 191. In [ 191, the value of the trivial knot has been calculated, and is 

equal to trv,(exp(hH/2)), where 6 is half sum of the positive co-roots. In this case 

6 = H/2. We have 

trvm(exp(W2)) = ,&vm PK,n(c) h” = EmpK,d(m2 - 1)/2)/z”. 
n=O n=O 

Note that H, in the representation V,, is a diagonal matrix with the following numbers 

on the diagonal: (m - l), (m - 3). . . , (1 - m). Comparing the coefficients of h” in the 

above equality, one gets 

--&[(m-l)“+(m-3Y+.. . + (1 - m)“] = mpK,n((m2 - 1)/z). 
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If n is odd, the left-hand side is 0. If it is even, using (7.1), one can show that the 

left-hand side is (l/(n + 1 )!)[&+I (k + m/2) - &+I (i - im)]. Hence, we get 

PK,n((m2 - 1)/2) = ,(,: ,),[B.,I(; + $m 

This holds for every positive integer m, hence for every real numbers, and we get the 

theorem. 0 

From the formula for 

easily see that 

O” B2n+l(X) 2n 

2&2n+ l)!h = 

generating functions of the Bernoulli polynomials one can 

eh(*-1/2) _ &1/2--x) 

eh/2 _ e-h/2 ’ 

Combining this with Theorem 7.1 we see that the image of v in U(s/2) is 

P(V) = ~ 
&i 

e(h/2)(v’%i) _ e-_(hM&%) 

eh/2 _ e-h/2 

If, as in quantum groups theory, [x] stands for 

[xl = 
exp(hx/2) - exp(-/2x/2) 

exp(h/2) - exp(-h/2) ’ 

then the previous equality can be rewritten in the following compact form: 

(7.2) 

(7.3 1 

(7.4) 

Now we consider the general case, when g is an arbitrary simple Lie algebra. Let 

$ be the HarishhChandra isomorphism between the center of the universal enveloping 

algebra of g and the algebra S(h)‘y of polynomials on h invariant under the Weyl 

group W. See, for example, [7]. 

Let 6 be the half sum of the positive roots. A generalization of (7.4) is the following. 

Theorem 7.2. The image of v in the center of U(g) is 

Here we regard 

as a function of the weight I E b*. The element u can be expressed as a formal power 

series of h with coefficients being polynomial on h. It is easy to see that u is invariant 

under actions of the Weyl group. Hence, all the coefficients of powers of h are in 
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sww, and one can apply the inverse of the Harish-Chandra isomorphism to these 

coefficients. 

Proof. One needs to prove that 

(7.5) 

Let P(V) = C,“=e c(n)h”, where c(n) are elements of 3(g). For a dominant weight ,I 

let VA be the irreducible finite dimensional g-module whose highest weight is A. Then 

trv,(dv)) = deg(i)~c(nW’, 
n=O 

(7.6) 

where try, is the trace in this representation, and deg(il) is the dimension of VA. 

We will consider every polynomial on At,. . , hl as a function on A E h*, where 

hl,..., hl form a base of h. 

Lemma 7.1. Let x be an element of 3(g), then x acts as x,q times the identity in Vi, 
where 

XL = $(x)(2 + 6). 

Proof. This follows from the definition of the Harish-Chandra isomorphism, see [7, 

Section 23.31. 0 

It suffices to prove (7.5) for a dominant weight 1. By Lemma 7.1, we have r+@(v)) 

(A + S) = $(C,“=o c(n)P>(A + 6) = CEO c(n),@. 

The right-hand side, by (7.6), is 

Using the formula for deg(A) in [7] we get 

$(P(v))(~ + 6) = trk Mv)) II 
(4 m> 

EEA, (A + ha>’ (7.7) 

Note that trv,(p(v)) is the value of the trivial knot in the representation VA, and is 

coincident with the value of the trivial knot of the invariant derived from the quantum 

group. This value has been calculated in [8] (there the authors computed the quantum 

dimension, which is exactly the value of the trivial knot): 
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where [x] is defined as in (7.3). This formula can also be established using a formula 

for the twist element of the quantum group in [ 191 and the Weyl character formula. 

Combined with (7.7) we have 

This holds true for every dominant weight A, hence for every R E h*, which implies 

(7.5). 0 

8. Proof of Lemma 2.1 

Let q and q’ be two points on the component C of the support of D other than 

the end points of the chords. Then we show that DC’) x x and DC’) x x are equal. We 
4 4’ 

may assume that there is only one end point between q and q’. The following lemma 

implies d~~,c,(D) x D’ = dc,~)(D) x D’. 
4 4’ 

Lemma 8.1. Let n be the number of chords in D’. Let DA, D&. . . , D;, Di,, , D& 

be chord diagrams identical except within a ball where they are as in Fig. 10. Then 

(8.1) 

module the four term relation. 

Proof. Let o,, 02,. . . , o, be chords in D’. We place the components of D’ vertically 

and t, > t2 > . .’ > tzn be the levels of end points of the chords of D’. Let qy be the 

point on Cm at level tj for j = 1,2,. . . ,2n and m = 1,2,. . . ,r. Let Dj, DT,. . , , DJ be 

the chord diagrams as in Fig. 10. Let qz$) and q’$i) be the end points of op. Then, 

by the four-term relation, 

By adding 8.2 for all e = 1,2,. . . , n, we get 8.1, since {a(l),. . . ,a(n), p(l),. . . ,fl(n)} = 

{I,..., 2n). 0 
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