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Abstract. We study the algebraic and geometric properties of stated skein algebras of
surfaces with punctured boundary. We prove that the skein algebra of the bigon is iso-
morphic to the quantum group Oq2(SL(2)) that provides a topological interpretation for its
structure morphisms. We also show that its stated skein algebra lifts in a suitable sense the
Reshetikhin-Turaev functor and in particular we recover the dual R-matrix for Oq2(SL(2))
in a topological way. We deduce that the skein algebra of a surface with n boundary com-
ponents is a comodule-algebra over Oq2(SL(2))⊗n and prove that cutting along an ideal arc
corresponds to Hochshild cohomology of bicomodules. We give a topological interpretation
of braided tensor product of stated skein algebras of surfaces as �glueing on a triangle�; then
we recover topologically some bialgebras in the category of Oq2(SL(2))-comodules, among
which the �transmutation� of Oq2(SL(2)). We also provide an operadic interpretation of
stated skein algebras as an example of a �geometric non symmetric modular operad�. In the
last part of the paper we de�ne a reduced version of stated skein algebras and prove that it
allows to recover Bonahon-Wong's quantum trace map and interpret skein algebras in the
classical limit when q → 1 as regular functions over a suitable version of moduli spaces of
twisted bundles.
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1. Introduction

This paper is devoted to study the notion of stated skein algebra of surfaces introduced by
the second author in [Le2] in order to reinterpret in skein theoretical terms the construction
of the quantum trace by Bonahon and Wong [BW] as well as incorporating Muller's version
of skein algebra [Mu]. Although the de�nition of the stated skein module applies to 3-
manifolds, this paper is entirely devoted to the case of surfaces: a forthcoming paper will
describe how this �ts in the framework of an extended topological �eld theory in dimensions
1, 2, 3. Indeed the case of surfaces is su�ciently rich in algebraic and geometrical terms to
deserve a separate treatment and we will now outline the results of this paper.

1.1. Skein algebras. Let R = Z[q±1/2] be the ring of Laurent polynomials in a variable
q1/2. Suppose S is the result of removing a �nite number of points, called punctures, from a
compact oriented 2-dimensional manifold with possibly non-empty boundary. The ordinary
skein algebra S̊ (S), introduced by Przytycki [Pr] and Turaev [Tu2], is de�ned to be the
R-module generated by isotopy classes of framed unoriented links in S× (0, 1) modulo the
Kau�man relations [Kau]

= q + q−1(1)

= (−q2 − q−2) .(2)

The product of two links α1 and α2 is the result of stacking α1 above α2. The skein alge-
bra has played an important role in low-dimensional topology and quantum topology and it
serves as a bridge between classical topology and quantum topology. The skein module has
connections to the SL2(C)-character variety [Bul, PS1], the quantum group of SL2(C), the
Witten-Reshetikhin-Turaev topological quantum �eld theory [BHMV], the quantum Teich-
müller spaces [CF1, Kas, BW, Le1], and the quantum cluster algebra theory [Mu].

In the de�nition of the skein algebra S̊ (S) the boundary ∂S does not play any role, and

we have S̊ (S) = S̊ (S̊), where S̊ is the interior of S. In an attempt to introduce excision
into the study of the skein algebra, the second author [Le2] introduce the notion of stated
skein algebra, denoted in this paper by S (S), whose de�nition involves tangles properly
embedded into S× (0, 1). These tangles can have end-points only on boundary edges of S,
which are open intervals connected components of the boundary. For details see Section 2.
A key result about stated skein algebras is that they behave well under cutting along an

ideal arc. Here an ideal arc is a proper embedding c : (0, 1) ↪→ S (so that its end points are
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the punctures). Cutting S along c one gets a 2-manifold S′ whose boundary contains two
open intervals a and b so that one can recover S from S′ by gluing a and b together, see
Figure 1.

Figure 1. Cutting S along ideal arc c to get S′, which might be disconnected

Then [Le2, Theorem 1] (see the splitting Theorem 2.15 below) says that there is a natural
injection of algebras

(3) θc : S (S) ↪→ S (S′),

given by a simple state sum. The extension from S̊ (S) to S (S) is unique (or canonical) if
one wants the splitting theorem and a consistency requirement to hold.
The paper is a systematic study of the stated skein algebra S (S). Let us now list the

main results of the paper.

1.2. Bigon and quantum SL2(C) coordinate ring. The quantized enveloping algebra
Uq2(sl2) and its Hopf dual Oq2(SL(2)), known as the quantum coordinate ring of the Lie
group SL2(C), play an important role in many branches of mathematics, see [Kass, Maj].
These algebras are usually de�ned by rather complicated presentations which are hard to
comprehend.
A �rst consequence of the splitting theorem is that the quantum coordinate ringOq2(SL(2))

can be described by simple geometric terms, namely, it is naturally isomorphic to the stated
skein algebra of the bigon B, which is the standard disk without two points on its boundary,
see Figure 2.

Figure 2. Left: bigon. Right: splitting the bigon along the dashed ideal arc

By splitting the bigon along an ideal arc c (which is the dashed arc in Figure 2) we get a
homomorphism ∆ := θc,

∆ : S (B)→ S (B)⊗S (B),
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which turns out to be compatible with the product and makes S (B) a bialgebra. Moreover,
we will de�ne using topological terms the counit, antipode and co-R-matrix which turns
S (B) into a �dual quasitriangular� (see [Maj] Section 2.2) a.k.a. �cobraided� (see [Kass],
Section VIII.5) Hopf algebra, and will prove the following.

Theorem 1 (Theorems 3.4 and 3.5). The dual quasitriangular Hopf algebra S (B) is iso-
morphic in a natural way to the quantum coordinate ring Oq2(SL(2)).

This result allows to use skein theoretical techniques to study Oq2(SL(2)). We will
show that many complicated algebraic objects and facts concerning the quantum groups
Oq2(SL(2)) and Uq2(sl2) have simple transparent picture interpretations. For example, the
above mentioned co-R-matrix has a very simple geometric picture description, see Theo-
rem 3.5. Another example is given by the reconstruction of Kashiwara's crystal basis, see
Proposition 3.10. One can even �import� in Oq2(SL(2)) natural skein theoretical objects:
in Subsection 3.8 we de�ne and provide some properties of the Jones-Wenzl idempotents in
Oq2(SL(2)).

1.3. Lift of the Reshetikhin-Turaev invariant. Suppose T is a tangle diagram in the
bigon whose boundary ∂T is in ∂B and the boundary points are labeled by signs ±. The
Reshetikhin-Turaev operator invariant theory [RT] assigns to T a scalar Z(T ) ∈ Q(q1/2),
see Section 5. On the other hand, such a labeled tangle T de�nes an element in our skein
algebra S (B). We have the following result which shows that our �invariant�, which is T
considered as an element of S (B), is a lift of the Reshetikhin-Turaev invariant.

Theorem 2 (Theorem 5.2). One has ε(T ) = Z(T ), where ε : S (B)→ Q[q±1/2] is the counit.

It would be interesting to understand this lift of the Reshetikhin-Turaev invariant in terms
of categori�cation.

1.4. Skein algebras as comodule over Oq2(SL(2)). Hochshild cohomology. One im-
portant consequence of the identi�cation of the bigon algebra with Oq2(SL(2)) is that for
every boundary edge e of a surface S, the skein algebra S (S) has a right Oq2(SL(2))-
comodule structure

∆e : S (S)→ S (S)⊗S (B).

This map ∆e is the splitting homomorphism (3) applied to the an ideal arc parallel to e which
cuts o� an ideal bigon from S whose right edge is e, see Figure 3. Similarly identifying the
left edge of B to e we get a left Oq2(SL(2))-comodule structure on S (S).

Figure 3. Geometric de�nition of the coaction: splitting the bigon along the
dashed ideal arc
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Using the comodule structure one can re�ne the splitting theorem by identifying the image
of the splitting homomorphism, as follows. Let us cut S along an ideal arc c to get S′ as in
Figure 1. Then S (S′) has a rightOq2(SL(2))-module structure coming from edge a and a left
Oq2(SL(2))-module structure coming from edge b. Thus S (S′) is a Oq2(SL(2))-bicomodule,
and hence there is de�ned the Hochshild cohomology HH0(S (S′)), for details see Section
4.

Theorem 3 (Theorem 4.8). Under the splitting homomorphism the skein algebra S (S)
embeds isomorphically into the Hochshild cohomology HH0(S (S′)). In particular, when c
cuts S into two surfaces S1 and S2, the splitting homomorphism maps S (S) isomorphically
onto the cotensor product of S (S1) and S (S2).

1.5. Skein algebra S (S) as module over Uq2(sl2). Since the Hopf algebra Uq2(sl2)
is the Hopf dual of Oq2(SL(2)), then after tensoring with Q(q1/2) each right Oq2(SL(2))-
comodule is automatically a left Uq2(sl2)-module. Thus each boundary edge e of S gives
S (S) a left Uq2(sl2)-module structure. Note that �nite-dimensional Uq2(sl2)-modules are
well-understood as they are quantum deformations of modules over the Lie algebra sl2(C).

Theorem 4 (Part of Theorem 4.6). Over the �eld Q(q1/2), for every boundary edge the
Uq2(sl2)-module S (S) is integrable, i.e. it is the direct sum of �nite-dimensional irreducible
Uq2(sl2)-modules.

Actually Theorem 4.6 is much stronger: it provides an explicit decomposition and contains
much more information about the decompositions as it deals also with the decomposition
over Lusztig's integral version of Uq2(sl2).
Using this result we also prove a dual version of Theorem 3 which, with the notation of

the theorem, shows that HH0(Q(q1/2)⊗RS (S′)) = Q(q1/2)⊗RS (S) (see Theorem 4.10).

1.6. Braided tensor product. The co-R-matrix makes the category of Oq2(SL(2))-como-
dules a braided category and in general given two algebras in that category (which are then
Oq2(SL(2))-comodule algebras) their tensor product can be endowed with the structure of
an algebra by using appropriately the braiding: this is the braided tensor product of the
algebras, see [Maj]. In Section 4.7, we generalise this notion to that of �self-braided tensor
product� which applies to a comodule algebra having two commuting comodule structures.
Suppose S is obtained by identifying two edges of a (possibly disconnected) surface S

with two distinct edges of an ideal triangle as in Figure 4. Then S (S) has two natural

Figure 4. Gluing S to two distinct edges of an ideal triangle to get S.

commuting structures of Oq2(SL(2))-comodule algebra, and we have the following:
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Theorem 5 (Theorem 4.17). As a Oq2(SL(2))-comodule algebra S (S) is canonically iso-
morphic to the self-braided tensor product of S (S). In particular, if S = S′ t S′′ and
the two edges belong to S′ and S′′ respectively then S (S) is canonically isomorphic to the
braided tensor product of S (S1) and S (S2).

Through this theorem we easily compute the skein algebra of all �polygons�, �punctured
bigons�, and �punctured monogons� in Subsection 4.8. It is remarkable that the skein algebras
of the latter turn out to be bialgebra objects in the category of Oq2(SL(2))-comodules and
that their structure morphism have natural topological interpretation. In particular the
punctured monogon yields the �transmutation� of Oq2(SL(2)).

1.7. Modular operad. The splitting homomorphism allows to put the theory of stated
skein algebras of surfaces in the framework of operad theory. We de�ne the notion of geo-
metric non-symmetric modular operad in Section 6 and prove the following.

Theorem 6 (Precise statement given by Theorem 6.1). The stated skein algebra of surfaces
gives rise to a non-symmetric modular operad in a category of bimodules over Uq2(sl2).

To be more speci�c while leaving the details for Section 6, let us recall that, according to
Markl ([Mark]) a �Non-symmetric modular operad in a monoidal category Cat� is a monoidal
functorNSO : MultiCyc→ Cat, where MultiCyc is a suitable category of �multicyclic sets�. In
Section 6 we re-cast Markl's de�nition, by de�ning a category TopMultiCyc whose objects are
punctured surfaces S and whose morphisms are �nite sets of ideal arcs (describing a way of
cutting the surfaces). From this point of view, we then show in Theorem 6.1 that stated skein
algebras provide a symmetric monoidal functor from this category into a suitable category
of modules and bimodules over copies of Uq2(sl2), thus providing a topological example of a
NS modular operad.

1.8. Reduced stated skein algebra, quantum torus, and quantum trace map. The
stated skein algebra S (S) has a quotient S (S) = S (S)/Ibad, called the reduced stated
skein algebra, whose algebraic structure is much simpler as it can be embedded into the so
called quantum tori. Here Ibad is the ideal generated by elements, called bad arcs, described
in Figure 5 and is explained in Section 7.

Figure 5. A bad arc.

We will show that the ordinary skein algebra S̊ (S) still embeds into S (S) and hence

we can use S (S) to study S̊ (S). Most importantly, the splitting theorem still holds for
S (S).

Theorem 7 (Theorem 7.6). If S′ is the result of cutting S along an ideal arc c, then the
splitting homomorphism θc descends to an algebra embedding

θ̄c : S (S) ↪→ S (S′).



8 FRANCESCO COSTANTINO AND THANG T. Q. LÊ

The non-trivial fact here is that θ̄c is injective.
Except for a few simple surfaces, we can always cut S along ideal arcs so that the result

is a collection of ideal triangles T1, . . . , Tk. It follows that there is an embedding

(4) Θ : S (S) ↪→
k⊗
i=1

S (Ti).

The important thing with the reduced version is that for an ideal triangle T , unlike the full
�edged S (T ), the reduced stated skein algebra S (T ) is a quantum torus in three variables:

Theorem 8 (Theorem 7.11). The reduced stated skein algebra S (T ) of an ideal triangle has
presentation

S (T ) = R〈α±1, β±1, γ±1〉/(βα = qαβ, γβ = qβγ, αγ = qγα).

Moreover, the reduced stated skein algebra of the bigon is naturally isomorphic to the
algebra R[x±1] of Laurent polynomial in one variable, see Proposition 7.10.
Consequently, the map Θ of (4) embeds the reduced stated skein algebra S (S) into a

quantum torus in 3k variables. Geometrically the variables α, β, γ in Theorem 8 come from
the corner arcs of the ideal triangle. There is a similar quantum torus T′(T ) in 3 variables
corresponding to the edges of T , and a simple change of variables gives us an embedding
S (T ) ↪→ T′(T ). Combining with Θ of (4) we get an algebra embedding

trq : S (S)
Θ
↪→

k⊗
i=1

S (Ti) ↪→
k⊗
i=1

T(Ti).

There is a subalgebra Y of
⊗k

i=1 T(Ti), known as the Chekhov-Fock algebra associated
to the triangulation. The famous quantum trace map of Bonahon and Wong [BW] is an

algebra homomorphism t̂rq : Ŝ (S) → Y , where Ŝ (S) is a coarser version of the stated
skein algebra which surjects onto S (S), see Section 2.5.

Theorem 9 (See Theorem 7.12). The image of trq is in Y. Thus trq restricts to an algebra

embedding trq : S (S) ↪→ Y, and the quantum trace map of Bonahon and Wong is the

composition Ŝ (S) � S (S)
trq
↪→ Y .

The existence of the quantum trace map (for S̊ (S)) was conjectured by Chekhov and
Fock [CF2], and was established by Bonahon and Wong [BW]. It is called the quantum
trace map since when q = 1 it becomes a formula expressing the trace of a curve under
the holonomy representation of the hyperbolic metric in terms of the shear coordinates of
the Teichmüller space. The second author [Le1] gave another proof of the existence of the
quantum trace map based on the Muller skein algebra, which is actually a subspace of the
state skein algebra S (S). The above approach using the reduced stated skein algebra o�ers
another proof, and also determines the kernel of the original quantum trace map t̂rq.

1.9. Classical limit. The last section explores the natural question of �what is the classical
limit of S (S)?� In the case of the standard skein algebra S̊ (S) it is known [Bul, PS1] (see

also [CM]) that when the quantum parameter q is −1 and the ground ring is C then S̊ (S)
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is isomorphic as an algebra to the coordinate ring the SL2(C)-character variety of S and
that in general the algebras at q and −q are isomorphic via the choice of a spin structure on
S ([Ba]). Note that our stated skein algebra is not commutative when q = −1 though it is
commutative when q = 1.
We introduce the variety tw(S) of �twisted SL2(C)-bundles� over S, which, roughly speak-

ing, are �at SL2(C)-bundles over the unit tangent bundle US of S with holonomy −Id
around the �bers of π : US → S and are equipped with trivializations along the edges of
S, but which we reformulate in terms of groupoid representations. To deal with the non-
oriented nature of the arcs of the stated skein algebra we have to use a trick smoothing the
arcs at their end-points so that one can compose arcs.

Theorem 10 (Theorem 8.12). When q = 1 and the ground ring is C the stated skein algebra
S (S) is naturally isomorphic to the coordinate ring of tw(S).

In classical terms, the splitting theorem becomes an instance of a van-Kampen like theorem
for groupoid representations.
Theorem 8.12 highlights a relation between S (S) and the coordinate ring of the character

variety of S. The study of quantizations of such rings has been performed with di�erent
techniques (based on Hopf algebras and lattice gauge theory) by Alekseev-Grosse-Schomerus
([AGS]), Bu�enoir-Roche [BR], Fock-Rosly ([FR]) and, later, via skein theoretical approaches
by Bullock-Frohman-Kania-Bartoszynska ([BFK]). The relation of our work with these pre-
vious ones is still to be clari�ed, although it seems that one of the main di�erences between
our approach and some of the above cited ones, is that we allow for �observables with bound-
ary� and, as explained in the preceding paragraph, this endows the algebras we work with
rich algebraic structures which in particular make computations much easier.

1.10. Related results. While the authors were completing the present work, D. Ben-Zvi,
A. Brochier and D. Jordan [BBJ] constructed a theory of quantum character variety for
general Hopf algebras, based on completely di�erent techniques. Part of the results of this
paper could probably be recasted in that theory, though we don't know the precise relation
between the two theories. The substantial di�erence of the techniques used makes these
works complementary. K. Habiro informed us that his �quantum fundamental group theory�
also gives an alternative approach to the theory of quantum character variety.
When the authors presented their works at conferences, Korinman informed us that he

in joint work A. Quesney obtained results similar to Theorem 3 and Theorem 10, see their
recent preprint [KQ].
Acknowledgements. The authors would like to thank F. Bonahon, R. Kashaev, A.

Sikora, V. Turaev, and D. Thurston for helpful discussions. Both authors were partially
supported by the CIMI (Centre International de Mathématiques et d'Informatique) Excel-
lence program during the Thematic Semester on Invariants in low-dimensional geometry and
topology held in spring 2017. The second author is partially support by an NSF grant.
The authors presented the results of this paper in the form of talks or mini-courses at

many conferences, including �Thematic School on Quantum Topology and Geometry� (Uni-
versity of Toulouse, May 2017), �Algebraic Structures in Topology and Geometry� (Riederalp,
Switzerland, January 2018), �TQFTs and categori�cation� (Cargese, March 2018), �Volume
Conjecture in Tokyo� (University of Tokyo, August 2018), �Categori�cation and beyond�
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(Vienna, January 2019), Topology mini-courses (university of Geneva, May 2019), �New
developments in quantum topology� (Berkeley June 2019), �Expansions, Lie algebras and in-
variants� (Montreal July 2019) and would like to thank the organizers for the opportunities
to present their work.

2. Stated skein algebras

We will present the basics of the theory of stated skein algebras: de�nitions, bases of
skein algebras, the splitting homomorphism, �ltrations and gradings. New results involve
Proposition 2.7 describing the inversion homomorphism and Proposition 2.17 giving the
exact value of the splitting homomorphism in the associated graded algebra.

2.1. Notations. Throughout the paper let Z be the set of integers, N be the set of non-
negative integers, C be the set of complex numbers. The ground ring R is a commutative
ring with unit 1, containing a distinguished invertible element q1/2. For a �nite set X we
denote by |X| the number of elements of X.

We will write x
•
= y if there is k ∈ Z such that x = qky.

2.2. Punctured bordered surface. By a punctured bordered surface S we mean a surface
of the form S = S \ P , where S is a compact oriented surface with (possibly empty)
boundary ∂S, and P is a �nite non empty set such that every connected component of the
boundary ∂S has at least one point in P . We don't require S be to connected. It is easy
to see that S is uniquely determined by S. Throughout this section we �x a punctured
bordered surface S.
An ideal arc on S is an immersion a : [0, 1] → S such that a(0), a(1) ∈ P and the

restriction of a onto (0, 1) is an embedding into S. Isotopies of ideal arcs are considered in
the class of ideal arcs.
A connected component of ∂S is called a boundary edge of S (or simply an edge), which

is an ideal arc.

Remark 2.1. The fact that each connected component of ∂S is an open interval is not a
serious restriction as for the purpose of the constructions of this paper a point-less boundary
component is treated as a puncture; so that in the end the only excluded surfaces are closed
ones without punctures.

2.3. Ordinary skein algebra. LetM = S× (0, 1). For a point (z, t) ∈ S× (0, 1) its height
is t. A vector at (z, t) is called vertical if it is a positive vector of z × (0, 1). A framing of a
1-dimensional submanifold α of M = S× (0, 1) is a continuous choice of a vector transverse
to α at each point of α.
A framed link in S× (0, 1) is a closed 1-dimensional unoriented submanifold α equipped

with a framing. The empty set, by convention, is considered a framed link.
A link diagram on S determines an isotopy class of framed links in S× (0, 1), where the

framing is vertical everywhere. Every isotopy class of framed links in S× (0, 1) is presented
by a link diagram.
The skein module S̊ (S), �rst introduced by Przytycki [Pr] and Turaev [Tu1], is de�ned

to be the R-module generated by the isotopy classes of framed unoriented links in S× (0, 1)
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modulo the Kau�man relations

= q + q−1(5)

= (−q2 − q−2)(6)

We use the following convention about pictures in these identities, as well as in other identities
in this paper. Each shaded part is a part of S, with a link diagram on it. Relation (5) says
that if link diagrams D1, D2, and D3 are identical everywhere except for a small disk in
which D1, D2, D3 are like in respectively the �rst, the second, and the third shaded areas,
then [D1] = q[D2] + q−1[D3] in the skein module S̊ (S). Here [Di] is the isotopy class of
links determined by Di. The other relation is interpreted similarly.
For two framed links α1 and α2 the product α1α2 is de�ned as the result of stacking α1

above α2. That is, �rst isotope α1 and α2 so that α1 ⊂ S× (1/2, 1) and α2 ⊂ S× (0, 1/2).
Then α1α2 = α1 ∪ α2. It is easy to see that this gives rise to a well de�ned product and
hence an R-algebra structure on S̊ (S).

2.4. Tangles and order. In order to include the boundary of S into the picture, we will
replace framed links by more general objects called ∂M -tangles. Recall that M = S× (0, 1)
and its boundary is ∂M = ∂S× (0, 1).
In this paper, a ∂M-tangle is an unoriented, framed, compact, properly embedded 1-

dimensional submanifold α ⊂M = S× (0, 1) such that:

• at every point of ∂α = α ∩ ∂M the framing is vertical, and
• for any boundary edge b, the points of ∂b(α) := ∂α∩ (b× (0, 1)) have distinct heights.

For a ∂M -tangle α de�ne a partial order on ∂α by: x > y if there is a boundary edge b
such that x, y ∈ b × (0, 1) and x has greater height. If x > y and there is no z such that
x > z > y, then we say x and y are consecutive.
Isotopies of ∂M-tangles are considered in the class of ∂M -tangles. It should be noted

that isotopies of ∂M -tangles preserve the height order. The empty set, by convention, is a
∂S-tangle which is isotopic only to itself.
As usual, ∂M -tangles are depicted by their diagrams on S, as follows. Every ∂S-tangle is

isotopic to one with vertical framing. Suppose a vertically framed ∂M -tangle α is in general
position with respect to the standard projection π : S × (0, 1) → S, i.e. the restriction
π|α : α→ S is an immersion with transverse double points as the only possible singularities
and there are no double points on the boundary of S. Then D = π(α), together with

• the over/underpassing information at every double point, and
• the linear order on π(α) ∩ b for each boundary edge b induced from the height order

is called a ∂M-tangle diagram, or simply a tangle diagram on S. Isotopies of ∂M -tangle
diagrams are ambient isotopies in S.
Clearly the ∂M -tangle diagram of a ∂M -tangle α determines the isotopy class of α. When

there is no confusion, we identify a ∂M -tangle diagram with its isotopy class of ∂M -tangles.
Let o be an orientation of ∂S, which on a boundary edge may or may not be equal to

the orientation inherited from S. A ∂M -tangle diagram D is o-ordered if for each boundary
edge b the order of ∂D on b is increasing when one goes along b in the direction of o. It is
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clear that every ∂M -tangle, after an isotopy, can be presented by an o-ordered ∂M -tangle
diagram. If o is the orientation coming from S, the o-order is called the positive order.

2.5. Stated skein algebra. A state on a �nite set X is a map s : X → {±}. We write
#s = |X|. A stated ∂M-tangle (respectively a stated ∂M-tangle diagram) is a ∂M -tangle
(respectively a ∂M-tangle diagram) equipped with a state on its set of boundary points.
The stated skein algebra S (S) is the R-module freely spanned by isotopy classes of stated

∂M -tangles modulo the de�ning relations, which are the old skein relation (7) and the trivial
loop relation (8), and the new boundary relations (9) and (10):

= q + q−1(7)

= (−q2 − q−2)(8)

= q−1/2 , = 0, = 0(9)

= q2 + q−1/2(10)

Here each shaded part is a part of S, with a stated ∂M -tangle diagram on it. Each arrowed
line is part of a boundary edge, and the order on that part is indicated by the arrow and the
points on that part are consecutive in the height order. The order of other end points away
from the picture can be arbitrary and are not determined by the arrows of the picture. On
the right hand side of the �rst identity of (9), the arrow does not play any role; it is there
only because the left hand side has an arrow.
Again for two ∂M -tangles α1 and α2 the product α1α2 is de�ned as the result of stacking

α1 above α2. The product makes S (S) an R-algebra. In [Le2] it is proved that if R is a
domain then S (S) does not have non-trivial zero-divisors, a fact known earlier for the case
when S has no boundary [PS2].
If S1 and S2 are two punctured bordered surfaces, then there is a natural isomorphism

S (S1 tS2) ∼= S (S1)⊗R S (S2).

Since the interior S̊ of S does not have boundary, we have S (S̊) = S̊ (S).
The subalgebra S +(S) spanned by ∂M -tangles whose states are all + is naturally isomor-

phic to the skein algebra de�ned by Muller [Mu], see [Le2, LP]. If in the de�nition of S (S)

we use only two relations (7) and (8), we get a coarser version Ŝ (S) which was de�ned by
Bonahon and Wong [BW].

Remark 2.2. Relations (9) already appeared in [BW]. Relation (10) appeared in [Le2]
where the stated skein algebra was introduced.

2.6. Consequences of de�ning relations. De�ne Cν
ν′ for ν, ν

′ ∈ {±} by

(11) C+
+ = C−− = 0, C+

− = q−1/2, C−+ = −q−5/2.

In the next lemma we have the values of all the trivial arcs.
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Lemma 2.3 (Lemma 2.3 of [Le2]). In S (S) one has

−q−3 = = −q3(12)

= Cν
ν′(13)

= = −q3Cν′

ν(14)

The next lemma describes how a skein behaves when the order of two consecutive boundary
points is switched.

Lemma 2.4 (Height exchange move, Lemma 2.4 of [Le2]). (a) One has

= q−1 , = q−1 , = q(15)

q
3
2 − q−

3
2 = (q2 − q−2) .(16)

(b) Consequently, if q = 1 or q = −1, then for all ν, ν ′ ∈ {±},

(17) = q .

Remark 2.5. Because of relation (17), in general S (S) is not commutative when q =

−1. This should be contrasted with the case of the usual skein algebra S̊ (S), which is
commutative and is canonically equal to the SL2(C) character variety of π1(S) if R = C and
q = −1 (assuming S is connected), see [Bul, PS1].

2.7. Re�ection anti-involution.

Proposition 2.6 (Re�ection anti-involution, Proposition 2.7 in [Le2]). SupposeR = Z[q±1/2].
There exists a unique Z-linear map χ : S (S)→ S (S), such that

• χ(q1/2) = q−1/2,
• χ is an anti-automorphism, i.e. for any x, y ∈ S (S),

χ(x+ y) = χ(x) + χ(y), χ(xy) = χ(y)χ(x),

• if α is a stated ∂M-tangle diagram then χ(α) is the result of switching all the crossings
of α and reversing the linear order on each boundary edge.

Clearly χ2 = id. We call χ the re�ection anti-involution.

2.8. Inversion along an edge.

Proposition 2.7. Let e be a boundary edge of a punctured bordered surface S and f : {±} →
R be a function such that f(+)f(−) = −q−3.
There exists a unique R-linear homomorphism inve,f : S (S)→ S (S) such that if α is a

stated ∂S-tangle diagram with a state s and with positive order on e, then

(18) inve,f (α) =

 ∏
x∈(α∩e)

f(s(x))

α′,
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where α′ is the same α except that the height order of α′ on e is given by the negative direction
of e and the state of α′ on e is obtained from that of α by switching ν ∈ {±} to −ν at every
boundary points in α ∩ e.
If e′ is another boundary edge and f ′(+)f ′(−) = −q−3, then

(19) inve,f ◦ inve′,f ′ = inve′.f ′ ◦ inve,f .

Proof. Let T be the set of isotopy classes of stated, positively ordered ∂S-tangle diagrams.
Since T spans S (S), the uniqueness of inve,f is clear.

Let S̃ be the R-module freely span by T , and ĩnve,f : S ′ → S (S) be the R-linear map

de�ned by (18). To show that ĩnve,f descends to a map inve,f : S (S) → S (S) one needs

to prove ĩnve,f is invariant under isotopy in M := S× (0, 1) and under the moves generated

by the de�ning relations (7)-(10). More precisely, we have to show that ĩnve,f (α) = ĩnve,f (α)
for any α, α′ ∈ T whenever

(i) α and α′ are isotopic as ∂M -tangles, or
(ii) α and α′ are respectively the left hand side and the right hand side of the de�ning

relations (7)-(10).

It is known that α and α′ are isotopic as ∂M -tangles if and only if they are related by
a sequence of the 3 framed Reidemeister moves of [Oh, Section 1.2]. The invariance under
the 3 framed Reidemeister moves follows from the invariance under the de�ning relations

(7) and (8), see [Kau]. Clearly ĩnve,f is invariant under the moves generated by the de�ning
relations (7) and (8). There remains relations (9) and (10).
Let us consider (9). Using the de�nition, f(+)f(−) = q−3, and then (14), we have:

inve,f

( )
= f(+)f(−) = −q−3 = −q−3(−q3)C+

− = q−1/2,

which proves the �rst identity of (9). The other two identities of (9) are trivial.
Let us consider (10). By de�nition and Lemma 2.4,

(20) inve,f

( )
= f(+)f(−) = (−q−3)(q ) = −q−2 .

inve,f

(
q2 + q

−1
2

)
= q2(−q−3) + q−

1
2

= −q−1
(
q−3 + q−

3
2 (q2 − q−2)

)
+ q−

1
2

= −q−4 + q−
9
2 ,(21)

and the right hand sides of (20) and (21) are equal due to (10).
Identity (19) follows immediately from the de�nitions. �

There are two important cases for us. De�ne

(22) inve := inve,C , and inve := inve,C̄ ,

where

(23) C(+) = C̄(−) = −q−5/2, C(−) = C̄(+) = q−1/2.
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Note that C(ν) = C−νν and C̄(ν) = C(−ν) for ν ∈ {±}. For a stated tangle diagram α
with a state s on the boundary edge e de�ne

(24) Ce(α) =
∏
x∈α∩e

C(s(x)) =
∏
x∈α∩e

C
−s(x)
s(x) .

If α has positive order on e then, with α′ de�ned as in Proposition 2.7, one has

(25) inve(α) = Ce(α)α′,

Remark 2.8. The de�nition (18) works only for stated ∂S-tangle diagrams with positive
order on e. If the order is not positive, the formula will be di�erent.
In general inve,f is not an algebra homomorphism.

2.9. Basis of stated skein module. A ∂M -tangle diagram D is simple if it has neither
double point nor trivial component. Here a closed component of D is trivial if it bounds
a disk in S, and an arc component of α is trivial if it can be homotoped relative to its
boundary to a subset of a boundary edge. By convention, the empty set is considered as a
simple stated ∂M -tangle diagram with 0 components.
De�ne an order on {±} so that the sign − is less than the sign +. IfX is a partially ordered

set, then a state s : X → {±} is increasing if s is an increasing function, i.e. f(x) ≤ f(y)
whenever x ≤ y.
Choose an orientation o of ∂S. Let B(S; o) be the set of of all isotopy classes of increas-

ingly stated, o-ordered simple ∂M -tangle diagrams. From the de�ning relations it is easy to
show that the set B(S; o) spans S (S) over R.

Theorem 2.9 (Theorem 2.8 in [Le2] ). Suppose S is a punctured bordered surface and o is
an orientation of ∂S. Then B(S; o) is an R-basis of S (S).

Remark 2.10. Theorem 2.9 means that the coe�cients given in the de�ning relations (9)
and (10) are consistent in the sense that they do not lead to any more relations among the
set B(S; o).

The subset B̊(S; o) ⊂ B(S; o) consisting of α ∈ B(S; o) having no arcs is a basis of

the ordinary skein algebra S̊ (S). Similarly, the subset B+(S; o) ⊂ B(S; o) consisting of
α ∈ B(S; o) having only positive states is a basis of the Muller skein algebra S +(S), see
[Mu, Le2, LP]. Hence we have the following.

Corollary 2.11. Both the ordinary skein algebra S̊ (S) and the Muller skein algebra S +(S)
are subalgebras of the stated skein algebra S (S).

2.10. Filtration and grading. Suppose a is either an ideal arc or a simple closed curve on
S and α is a simple ∂M -tangle diagram on S. The geometric intersection index I(a, α) is

I(a, α) = min |a ∩ α′|,
where the minimum is over all the simple ∂M -tangle diagrams α′ isotopic to α.
For a collection A = {a1, . . . , ak}, where each ai is either an ideal arc or a simple closed

curve, and n ∈ N let FA
n (S (S)) be the R-submodule of S (S) spanned by all stated

simple ∂M -diagrams α such that
∑k

i=1 I(ai, α) ≤ n. It is easy to see that the collection
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{FA
n (S (S))}n∈N forms a �ltration of S (S) compatible with the algebra structure, i.e. with

Fn = FA
n (S (S)) one has

Fn ⊂ Fn+1,
⋃
n∈N

Fn = S (S), FnFn′ ⊂ Fn+n′ .

One can de�ne the associated graded algebra GrA(S (S)):

GrA(S (S)) =
∞⊕
n=0

GrAn(S (S)) with GrAn(S (S)) = Fn/Fn−1 ∀n ≥ 1 and Gr0 = F0.

This type of �ltration has been used extensively in the theory of the ordinary skein algebra,
see e.g. [Le1, FKL, LP, Marc].
The following is a consequence of Theorem 2.9:

Proposition 2.12 (Proposition 2.12 in [Le2]). Let o be an orientation of the boundary of a
punctured bordered surface S, and A = {a1, . . . , ak} be a collection of boundary edges of S.

(a) The set {α ∈ B(S; o) |
∑k

i=1 I(α, ai) ≤ n} is an R-basis of FA
n (S (S)).

(b) The set {α ∈ B(S; o) |
∑k

i=1 I(α, ai) = n} is an R-basis of GrAn(S (S)).

For what concerns the grading, for each non-negative integer m and a boundary edge e
let Ge

m be the R-subspace of S (S) spanned by stated ∂M -tangle diagrams α with δe(α) :=∑
u∈(α∩e) s(u) = m, where s is the state and we identify + with +1 and − with −1.

From the de�ning relations it is clear that S (S) =
⊕

m∈ZG
e
m and Ge

mG
e
m′ ⊂ Ge

m+m′ . In
other words, S (S) is a graded algebra with the grading {Ge

m}m∈Z.
Also the following is a consequence of Theorem 2.9:

Proposition 2.13. Let S be a punctured bordered surface and o be an orientation of ∂S.
The set {α ∈ B(S; o) | δe(α) = m} is an R-basis of Ge

m(S (S)).

If o′ is another orientation of the boundary ∂S, the change from basis B(S; o) to B(S; o′)
might be complicated. For the associated space GrA(S (S)), the change of bases is simpler.

Recall that α
•
= α′ means α = qmα′ for some m ∈ Z.

Proposition 2.14. Suppose α is stated tangle diagram on S and I(α, e) = k where e is a
boundary edge. Let's alter α to get α′ by changing the height order on e and the states on e
such that δe(α) = δe(α

′). Then one has

(26) α
•
= α′ in Grek(S (S)).

Proof. One can get α′ from α by a sequence of moves, each is either (i) an exchange of the
heights of two consecutive vertices on e, or (ii) an exchange of states of two consecutive
vertices on b. We can assume that α′ is the result of doing a move of type (i) or type (ii).
In case of move (i), the identities (15) and (16) prove (26).
In case of move (ii), the identity (10) prove (26). �
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2.11. Splitting/Gluing punctured bordered surfaces. Suppose a and b are distinct
boundary edges of a punctured bordered surface S′ which may not be connected. Let
S = S′/(a = b) be the result of gluing a and b together in such a way that the orientation
is compatible. The canonical projection pr : S′ → S induces a projection p̃r : M =
S′ × (0, 1)→M = S× (0, 1). Let c = pr(a) = pr(b). It is an interior ideal arc of S.
Conversely if c is an ideal arc in the interior of S, then there exists S′, a, b as above such

that S = S′/(a = b), with c being the common image of a and b. We say that S′ is the
result of splitting S along c.
A ∂M -tangle α ⊂M = S× (0, 1), is said to be vertically transverse to c if

• α is transverse to c× (0, 1),
• the points in ∂c α := α∩ (c× (0, 1)) have distinct heights, and have vertical framing.

Suppose α is a stated ∂M -tangle vertically transverse to c. Then α̃ := p̃r−1(α) is a ∂M ′-
tangle which is stated at every boundary point except for newly created boundary points,
which are points in p̃r−1(∂c α). A lift of α is a stated ∂M ′-tangle β which is α̃ equipped with
states on p̃r−1(∂c α) such that if x, y ∈ p̃r−1(∂c α) with p̃r(x) = p̃r(y) then x and y have the
same state. If |∂c α| = k, then α has 2k lifts.

Theorem 2.15 (Splitting Theorem, Theorem 3.1 in [Le2]). Suppose c is an ideal arc in the
interior of a punctured bordered surface S and S′ is the result of splitting S along c.
(a) There is a unique R-algebra homomorphism θc : S (S)→ S (S′), called the splitting

homomorphism along c, such that if α is a stated ∂M-tangle vertically transverse to c, then

(27) θc(α) =
∑

β,

where the sum is over all lifts β of α.
(b) In addition, θc is injective.
(c) If c1 and c2 are two non-intersecting ideal arcs in the interior of S, then

θc1 ◦ θc2 = θc2 ◦ θc1 .

Remark 2.16. The coe�cients of the right hand sides of the de�ning relations (9) and (10)
were chosen so that one has the consistency (see Remark 2.10) and the splitting theorem.
It can be shown that if one requires the consistency and the splitting theorem, then the
coe�cients are unique, up symmetries of a group isomorphic to Z/2× Z/2.

2.12. Splitting homomorphism and �ltration. Fix an orientation o of the boundary
edges of ∂S. Let S′ be the result of splitting S along an ideal arc c, with c being lifted
to boundary edges a and b of S′. Choose an orientation of c and lift this orientation to a
and b which, together with o, gives an orientation o′ for S′. Assume D is a stated simple
o-ordered ∂M -tangle diagram which is taut with respect to c, i.e. |D∩ c| = I(D, c). For each
each i = 0, 1, . . . ,m := |D ∩ c| let (D̃, si) be the ∂M ′-tangle diagram where D̃ = pr−1(D),
and the states on both a and b are o′-increasing and having exactly i minus signs. Then each

(D̃, si) is in the basis of the free R-module Gr
{a,b}
2m (S (S′)) described in Proposition 2.12.

For non-negative integers n, i the quantum binomial coe�cient is de�ned by(
n

i

)
q

=

∏n
j=n−i+1(1− qj)∏i
j=1(1− qj)

.
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Proposition 2.17. In Gr
{a,b}
2m (S (S′)) one has

(28) θc(D) =
m∑
i=0

(
m

i

)
q4

(D̃, si).

Proof. For s : D ∩ c→ {±} let (D̃, s) be the stated o′-ordered S′-tangle diagram with state
s on a and b. By de�nition,

(29) θ(D) =
∑

s:D∩c→{±}

(D̃, s) ∈ S (S′).

Taking into account the �ltration, from relations (10) and (15), we see that in Gr
{a,b}
2m (S (S′)),

(30) = q2

  , = q2

  .

It follows that Gr
{a,b}
2m (S (S′)) we have

(31) = q4

  .

Suppose s : D ∩ c→ {±} has i minus values. For k = 1, . . . , i let xk be the number of plus
states (of s) lying below the k-th minus state. By doing many switches, each changing a
pair of consecutive (−,+) to (+,−), we can transform s into si. The number of switches is
x1 + · · ·+ xi. Hence from (31) we see that

(D̃, s) = q4(x1+...xi)(D̃, si).

Taking the sum over all s : D ∩ c→ {±} with i minus values, we get

(32) θ(D) =
m∑
i=0

( ∑
0≤x1≤···≤xi≤m−i

q4(x1+···+xi)

)
(D̃, si) in Gr

{a,b}
2m (S (S′)).

By induction on i one can easily prove that

(33)
∑

0≤x1≤···≤xi≤n

q4(x1+···+xi) =

(
n+ i

i

)
q4
,

from which and (32) we get (28). �

2.13. The category of punctured bordered surfaces and the functor S . Amorphism
from one bordered punctured surface S to another one S′ is an isotopy class of orientation-
preserving embeddings from S to S′. Here we assume that the embeddings map a boundary
edge of S into (but not necessarily onto) a boundary edge of S′.
Very often we identify an embedding f : S ↪→ S′ with its isotopy class.
Suppose f : S → S′ is an embedding representing a morphism from S to S′. De�ne an
R-linear homomorphism f∗ : S (S)→ S (S′) such that if α is a stated tangle diagram on S
with positive order then f∗(α) is given by the stated tangle diagram f(α), also with positive
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order. It is clear that f∗ is an R-linear homomorphism, and it does not change under isotopy
of f .
In general f∗ is not an R-algebra homomorphism. However, if every edge of S′ contains

the image of at most one edge of S, then f∗ is an R-algebra homomorphism.

Example 2.18. A bigon is the standard closed disk in the plane with two points on its
boundary removed. Suppose a ⊂ S is an arc whose two end points are in distinct boundary
edges e1 and e2, where

Example 2.19. Let e be a boundary edge of S and S′ = S \ {v}, where v ∈ e. The
embedding ι : S′ ↪→ S induces an R-linear homomorphism ι∗ : S (S′) → S (S) which is
surjective but not injective in general.
Suppose e′ ⊂ e is one of the two boundary edges of S′ which is part of e. There is a

di�eomorphism g : S→ S′ \ {e′} which is unique up to isotopy. Thus, we have a morphism
f : S→ S′, which is the composition

S
g−→ S′ \ {e′} ↪→ S′.

The morphism f induces an injective (but not surjective) algebra morphism f∗ : S (S) ↪→
S (S′).

3. Hopf algebra structure of the bigon and Oq2(SL(2))

We will de�ne using geometric terms a dual quasitriangular (a.k.a. cobraided) Hopf al-
gebra structure on the stated skein algebra S (B) of the bigon B and then show that it is
naturally isomorphic to the dual quasitriangular Hopf algebra Oq2(SL(2)). We also show sim-
ple pictures of the canonical basis of Oq2(SL(2)), and discuss the Jones-Wenzl idempotents
in S (B). In this section R = Z[q±1/2] unless otherwise stated.

3.1. Monogon and Bigon. Let D be the standard disk

D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}
and v1 = (0,−1) and v2 = (0, 1) are two points on the circle ∂D. The punctured bordered
surfaceM = D \ {v1} is called the monogon, and B = D \ {v1, v2} is called the bigon. Let
el, er be the two boundary edges of B as depicted in Figure 6. For ~µ = (µ1, . . . , µk) and
~η = (η1, . . . , ηk) in {±}k let α~η~µ ∈ S (B) be the element presented by k parallel arcs as in
Figure 6, with (η1, . . . , ηk) being the states on el in increasing order and (µ1, . . . , µk) being
the states on er in increasing order.

Figure 6. Monogon, bigon with its edges el and er, elements α+− and α~η~µ.
Note that for α~η~µ the height order is indicated by the arrows.
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We have S (M) = R. Moreover, one has

(34) =

Here the circle enclosing x and two vertical lines attaching to it stand for a stated ∂S-tangle
diagram. The proof follows by using the skein relation (7), then the loop relation (8), and
�nally the arc relation (9) to reduce x to a scalar.
We study the algebra S (B) in this section. Let rot : B → B be the rotation (of the

plane containing B) by 180o about the center of B, which is a self-di�eomorphism of B and
induces an R-algebra involution

(35) rot∗ : S (B)→ S (B).

3.2. Coproduct. Suppose e is a boundary edge of a punctured bordered surface S. Let S′

be the result of cutting out of S a bigon B whose right edge er is identi�ed with e. Since S
′ is

canonically isomorphic to S in the category of punctured bordered surfaces, we will identify
S (S) with S (S′). The splitting homomorphism gives an injective algebra homomorphism

S (S′) ↪→ S (S tB) ≡ S (S)⊗R S (B).

Since we identify S (S) with S (S′), this map becomes an R-algebra homomorphism

(36) ∆e : S (S) ↪→ S (S)⊗R S (B).

Figure 7. The coaction ∆e.

Suppose x ∈ B(S, o) is a basis element, where o is a given orientation of ∂S. Assume the
state of x on e is ~µ, then we have (see Figure 7):

(37) ∆e(x) =
∑

~η∈Sx∩e

x~η ⊗ α~η~µ,

where Sx∩e is the set of all states of x ∩ e and x~η is x with the state on e switched to ~η.
In particular, when S = B and e = er, we get an R-algebra homomorphism ∆ = ∆er ,

(38) ∆ : S (B)→ S (B)⊗R S (B).

Theorem 2.15(c) implies that ∆ is coassociative, i.e.

(39) (∆⊗ id)∆ = (id⊗∆)∆.
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Applying (37) to x = ανµ with ν, µ ∈ {±}, we get

(40) ∆(ανµ) =
∑
η∈{±}

ανη ⊗ αηµ.

3.3. Presentation of S (B). A presentation of the algebra S (B) was given in [Le2]. We
give here a presentation of S (B) in a form which is suitable for us. Recall that C(η) = C η̄

η

for η ∈ {±} were de�ned by (11). We form the following matrix

(41) C :=

(
C+

+ C+
−

C−+ C−−

)
=

(
0 q−1/2

−q−5/2 0

)
Lemma 3.1. The R-algebra S (B) is generated by {αν,µ | ν, µ ∈ {±}} with the following
relations:

C = AtCA(42)

C = ACAt,(43)

where At is the transpose of A and

A :=

(
α++ α+−
α−+ α−−

)
.

Proof. Explicitly, the relations (42) and (43) are respectively

Cν
µ · 1 =

∑
η∈{±}

C(η̄)αηναη̄µ = C+
−α+να−µ + C−+α−να+µ ∀ν, µ ∈ {±}(44)

Cν
µ · 1 =

∑
η∈{±}

C(η̄)ανηαµη̄ = C+
−αν+αµ− + C−+αν−αµ+ ∀ν, µ ∈ {±}.(45)

Let e be the only boundary edge of the monogon M. Because S (M) = R and R ⊗
S (B) = S (B), the R-algebra map ∆e : S (M) → S (M) ⊗R S (B) is an R-algebra map
∆e : R → S (B). As any R-linear map, we must have ∆e(c) = c · 1, where 1 is the unit of
S (B). Apply ∆e to the simple arc in the monogon whose endpoints are stated by ν and µ
and we get a proof of (44) as follows:

Cν
µ =

∆e−→
∑

η,η′∈{±}

=
∑
η∈{±}

C(η̄)αηναη̄µ.

Equation (45) is obtained from Equation (44) by applying the map rot∗ of (35).
Using Theorem 2.9 one sees that the set

(46) B = {αh++α
k
−+α

l
−− | h, k, l ∈ N} ∪ {αh++α

k
+−α

l
−− | h, k, l ∈ N, k ≥ 1}

is an R-basis of S (B). In particular, S (B) is generated by ανµ with ν, µ ∈ {±}.
Using these relations it is easy to check that any monomial in the ανµ can be expressed

as an R-linear combinations of B. The proposition follows. �
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3.4. Counit. The embedding ι : B ↪→ M gives rise to an R-linear map ι∗ : S (B) →
S (M) = R. De�ne ε : S (B)→ R as the composition ε = ι∗ ◦ inver ,

ε : S (B)
inver−→ S (B)

ι∗−→ S (M) = R,

where inver is de�ned in Section 2.8. Explicitly, if α is a stated ∂B-tangle diagram as in
Figure 8, then

(47) ε(α) = Cer(α)α′,

where α′ is described in Figure 8 and Cer(α) is de�ned by (24).

Figure 8. How to obtain α′ and α′′ from α in the de�nition of counit and
antipode. Height order is indicated by the arrows on the boundary edges.
Then α′ is the same α, but considered as a tangle diagram in M with its
states on the edge er switched from ν to ν̄ = −ν. And α′′ is obtained from α
by a rotation of 180o, and switching all the states ν to ν̄.

Using (47) and the values of C(η), one can check that

(48) ε(ανµ) = δνµ :=

{
1 if ν = µ

0 if ν 6= µ
.

Proposition 3.2. The algebra S (B) is a bialgebra with counit ε and coproduct ∆.

Proof. We already saw that ∆ is an algebra homomorphism and is associative. It remains
to show that ε is an algebra homomorphism, and

(49) (ε⊗ id) ◦∆(x) = x = (id⊗ ε) ◦∆(x).

Let x, y ∈ S (B) be presented by tangle diagrams schematically depicted as in Figure 9.

Figure 9. Elements x, y ∈ S (B). Each horizontal strand stands for several
horizontal lines which are tangled in the two small disks.
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The following shows that ε(xy) = ε(x)ε(y), i.e. ε is an algebra homomorphism:

ε(xy) = ε

  = Cer(x)Cer(y) = Cer(x)Cer(y) = ε(y)ε(x).

Here we use equality (34) in the third identity.
As both ∆ and ε are algebra homomorphisms, one only needs to check (49) for the gener-

ators x = ανµ with ν, µ ∈ {±}. Using (40) and (48), we have

(ε⊗ id) ◦∆(ανµ) = (ε⊗ id)
∑
η

ανη ⊗ αηµ = ανµ,

which proves the �rst identity of (49). The other identity is proved similarly. �

3.5. Antipode. De�ne S : S (B)→ S (B), by S := rot∗ ◦ (inver ◦ (invel)
−1), where inv and

inv are de�ned in Subsection 2.8. Explicitly, if α is a stated ∂B-tangle diagram as in Figure
8, then

(50) S(α) =
Cer(α)

Cel(α)
α′′,

where α′′ is described in Figure 8. In particular, we have

(51) S(ανµ) =
C(µ)

C(ν)
αµ̄ν̄ .

Explicitly,

(52) S(α++) = α−−, S(α−−) = α++, S(α+−) = −q2α+−, S(α−+) = −q−2α−+.

Proposition 3.3. The map S is an antipode of the bialgebra S (B), making S (B) a Hopf
algebra.

Proof. From the de�nition (50) one sees that S is an anti-homomorphism, i.e.

S(xy) = S(y)S(x).

It remains to check the following property of an antipode:

(53)
∑

S(x′)x′′ = ε(x)1 =
∑

x′S(x′′),

where we use the Sweedler's notation for the coproduct ∆x =
∑
x′⊗ x′′. Since S is an anti-

homomorphism and ε is an algebra homomorphism, it is enough to check (53) for generators
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x = ανµ. In that case, using (40) we have ∆(x) = ∆(ανµ) =
∑

η ανη ⊗ αηµ, and∑
S(x′)x′′ =

∑
η∈{±}

S(ανη)αηµ

=
∑
η∈{±}

C(η)

C(ν)
αη̄ν̄αηµ by (51)

=
C ν̄
µ · 1
C(ν)

by (44)

= δνµ · 1 = ε(ανµ) · 1 by de�nition of C(ν) and (48),

which proves the �rst identity of (51). The second identity of (51) is proved similarly. �

3.6. Quantum algebra Oq2(SL(2)). Let us recall the de�nition of the quantum coordinate
ring Oq2(SL(2)) of SL2(C), which is the Hopf dual of the quantum group Uq2(sl2). See [Maj].

De�nition 1 (Oq2(SL(2))). The Hopf algebra Oq2(SL(2)) is the R-algebra generated by
a, b, c, d with relations

ca = q2ac, db = q2bd, ba = q2ab, dc = q2cd,(54)

bc = cb, ad− q−2bc = 1 and da− q2cb = 1.(55)

Its coproduct structure is given by

∆(a) = a⊗a+b⊗c, ∆(b) = a⊗b+b⊗d, ∆(c) = c⊗a+d⊗c, ∆(d) = c⊗b+d⊗d.
Its counit is de�ned as ε(a) = ε(d) = 1, ε(b) = ε(c) = 0 and its antipode is de�ned by
S(a) = d, S(d) = a, S(b) = −q2b, S(c) = −q−2c.

Theorem 3.4. There exists a Hopf algebra isomorphism φ : S (B) → Oq2(SL(2)) given on
the generators by

(56) φ(α+,+) = a, φ(α+,−) = b, φ(α−,+) = c, φ(α−,−) = d.

Furthermore, under the identi�cation of S (B) with Oq2(SL(2)) via the isomorphism φ, the
involution rot∗ : S (B) → S (B), given by the rotation of 180◦ around the center of the
bigon (see (35)), becomes the R-algebra involution r : Oq2(SL(2)) → Oq2(SL(2)) given by
r(a) = a, r(b) = c, r(c) = b, r(d) = d. Moreover, r is a co-algebra antimorphism, i.e.

(r ⊗ r) ◦∆op = ∆ ◦ r.

Proof. By Lemma 3.1, the R-algebra S (B) is generated by α±± with relations (42) and (43).
Under the assignment φ given on generators α±± by (56), the matrix relations (42) and (43)
become respectively

ca = q2ac, db = q2bd, ad− q−2cb = 1, da− q2bc = 1(57)

ba = q2ab, dc = q2cd, ad− q−2bc = 1, da− q2cb = 1(58)

Each of these identities is a consequence of the relations in (54) and (55). Conversely, all the
relations in (54) and (55), except for bc = cb, are among the identities (57) and (58). The
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remaining relation bc = cb is obtained by taking the di�erence between the last identity of
(57) and the last identity of (58). Hence φ is an R-algebra isomorphism.
To check that φ is a Hopf algebra isomorphism it is su�cient to check this on the level of

generators where it is straightforward.
The last statement is a direct veri�cation. �

3.7. Geometric depiction of co-R-matrix, a lift of the co-R-matrix. The Hopf algebra
Oq2(SL(2)) is �dual quasitriangular� (see [Maj] Section 2.2) or �cobraided� (see e.g. [Kass],
Section VIII.5) , i.e. it has a co-R-matrix with the help of which one can make the category
of Oq2(SL(2))-modules a braided category. Formally, a co-R-matrix is a bilinear form

ρ : Oq2(SL(2))⊗Oq2(SL(2))→ R
such that there exists another bilinear form ρ̄ : Oq2(SL(2))⊗Oq2(SL(2))→ R (the �inverse"
of ρ) satisfying for any x, y, z ∈ U ,∑

ρ(x′ ⊗ y′)ρ̄(x′′ ⊗ y′′) =
∑

ρ̄(x′ ⊗ y′)ρ(x′′ ⊗ y′′) = ε(x)ε(y)(59) ∑
ρ(x′′ ⊗ y′′)y′x′ =

∑
ρ(x′ ⊗ y′)x′′y′′(60)

ρ(xy ⊗ z) =
∑

ρ(x′ ⊗ z′)ρ(y′′ ⊗ z′′)ε(x′′)ε(y′)(61)

ρ(x⊗ yz) =
∑

ρ(x′ ⊗ z′)ρ(x′′ ⊗ y′′)ε(z′′)ε(y′)(62)

Here we use Sweedler's notation for the coproduct. Relations (61) and (62) show that ρ is
totally determined by its values at a set of generators of the algebra Oq2(SL(2)), and the
values ρ at a set of generators are given by (see [Kass])

(63) ρ


a⊗ a b⊗ b a⊗ b b⊗ a
c⊗ c d⊗ d c⊗ d d⊗ c
a⊗ c b⊗ d a⊗ d b⊗ c
c⊗ a d⊗ b c⊗ b d⊗ a

 =


q 0 0 0
0 q 0 0
0 0 q−1 q − q−3

0 0 0 q−1


Theorem 3.5. Under the identi�cation of S (B) and Oq2(SL(2)) via the isomorphism φ,
the co-R-matrix ρ and its inverse ρ̄ have the following geometric description

ρ

(
⊗

)
= ε

( )
(64)

ρ̄

(
⊗

)
= ε

( )
.(65)

Here a circle enclosing x and two lines adjacent to the circle stand for a stated ∂B-tangle
diagram, also denoted by x. The left hand side of (64) stands for ρ(x⊗ y).

Proof. Let ρ′ be the map de�ned by the r.h.s. of (64): we will show that ρ′ = ρ. For this
it is enough to show that ρ′ satis�es (61), (62), and the initial values identity (63), all with
ρ replaced by ρ′. We have, where a line labeled by, say x, stands for the stated ∂B-tangle
diagram x,

ρ′(xy ⊗ z) = ε

( )
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Split the bigon by the vertical middle ideal arc, then use the fact that ε(u) =
∑
ε(u′)ε(u′′)

(in any Hopf algebra) where ∆(u) =
∑
u′ ⊗ u′′, we have

=
∑

ε

( )
ε

( )
=
∑

ρ(x′ ⊗ z′)ρ(y′′ ⊗ z′′)ε(x′′)ε(y′).

This proves (61) for ρ′. The proof of (62) is similar.
To check (63) we have to check 16 identities, all of which are easy. For example, the most

di�cult one is the identity of the (3, 4) entries:

ρ′(b⊗ c) = ε

( )
= q ε

( )
+ q−1 ε

( )
= q − q−3 by (48) and (14).

This proves (63) for the (3, 4) entries. Identity (63) for other entries are similar. �

Remark 3.6. The bilinear form ρ′ : Oq2(SL(2))⊗Oq2(SL(2))→ R de�ned by

(66) ρ′(x⊗ y) := ρ̄(y ⊗ x) = ε

( )
gives a new co-R-matrix for Oq2(SL(2)), which is the mirror re�ection of ρ.

3.8. The Jones-Wenzl idempotents as elements of the bigon algebra. In this sub-
section we will work over the ring Rloc obtained by localizing R over the multiplicative set

generated by {[n] = q2n−q−2n

q2−q−2 , n ≥ 1}. Recall that the nth Temperely-Lieb algebra Tn (see e.g.

[Tu3]) is the Rloc-algebra generated by non-stated simple (n, n)-tangle diagrams in B mod-
ulo isotopy (rel to the boundary) and relation (8). The product is obtained by concatenating
horizontally.

Figure 10. On the left the unit of T5. On the right an element of T5.

A Rloc-basis of Tn is given by simple (n, n)-tangle diagrams without closed components;
de�ne ε : Tn → Rloc be the dual of the element 1 with respect to this basis. The nth Jones-
Wenzl idempotent is an element JWn ∈ Tn de�ned by recursion as explained in Figure 11.

The following is the key property of the JWn, see e.g. [Tu3].

Proposition 3.7. One has ε(JWn) = 1. For all x ∈ Tn, it holds JWnx = xJWn = ε(x)JWn.
In particular JW 2

n = JWn.
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= + [n−1]
[n]

Figure 11. The recursion relation for JWn ∈ Tn. By de�nition JW1 = 1 ∈ T1.

For a simple (n, n)-tangle diagram x ∈ Tn and ~µl, ~µr ∈ {±}n let x(~µl, ~µr) be the stated
∂B-tangle diagram which is x with states ~µl on el and states ~µr on er, and the height order
on each of el and er is from bottom to top. By linearity, for y ∈ Tn, we de�ne y(~µl, ~µr). This
is well-de�ned since (8) is part of the de�ning relations of stated skein algebra. Thus, if y is
trivial (n, n)-tangle diagram, then y(~η, ~µ) is the element α~η~µ described in Figure 12.

Example 3.8. If all the components of ~η are the same and all the components of ~µ are the
same, then JWn(~η, ~µ) = α~η~µ. Indeed JWn is equal to trivial (n, n)-tangle diagram plus the
linear combination of diagrams each contains an arc whose endpoints are both in el or in er;
such an arc is 0 by (9).

Proposition 3.9. For ~µ ∈ {±}n let o(~µ) be obtained by reordering increasingly the states of
~µ and no(~µ) is the minimal number of exchanges needed to do so. Then

JW (~µl, ~µr) = q2 no(~µl)+2 no( ~µr)JW (o(~µl), o( ~µr))(67)

∆(JW (~µl, ~µr)) =
n∑
j=0

(
n

j

)
q4
JW (~µl, ~ηj)⊗ JW (~ηj, ~µr),(68)

where ~ηj is the increasing state containing j signs + and n− j signs −.

Proof. Observe that if one exchanges a sign − and a + which are not in the increasing
order along er then by (10) one gets q2 times the reordered term and q

1
2 times a term killed

by JWn. Since a similar argument (using Lemma 2.4) shows that each reordering along el
multiplies JW by q2, the �rst statement follows. The second statement is a consequence of
the fact that JW 2

n = JW in Tn and Proposition 2.17. �

3.9. Kashiwara's basis for Oq2(SL(2)). We will see that the celebrated Kashiwara canon-
ical basis of Oq2(SL(2)), see [Ka], is the geometrically de�ned basis B(B, o+) of Theorem 2.9,
up to powers of q. Here o+ is the positive orientation of the boundary ∂B of the bigon B.

Figure 12. Elements β~η~µ (left) and β′~η~µ (right) with ~η = (−,+,+) and ~µ =
(−−+); the di�erence is the direction of the left edge.
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First recall B(B, o+). For sequences ~η, ~µ ∈ {±}n let β~η,~µ be the stated ∂B-tangle diagram
consisting of n horizontal arcs and stated by ~η on the left edge and ~µ on the right edge, with
height order given by o+; see Figure 12. Then

B(B, o+) = {β~η,~µ | ~η, ~µ are increasing}.
Let β′~η,~µ be the same β~η,~µ with reverse height order on the left edge, see Figure 12. De�ne

Bcan := {β′~η,~µ | β~η,~µ ∈ B(B; o+)} = {α~η,~µ | ~η is decreasing, ~ν is increasing.}.
Here α~η,~µ is de�ned in Figure 6.
From Lemma 2.4 which deals with height exchange, one can easily show that

(69) β′~η,~µ = qh(~η)β~η,~µ, h(~η) :=
1

2
(n+n− + n+ + n− − n2

+ − n2
−)

where n+ (respectively n−) is the number of + (respectively −) in the sequence ~η. It follows
that Bcan is also an R-basis of S (B).

Proposition 3.10. Via the isomorphism of Theorem 3.4, the basis Bcan coincides with the
canonical basis de�ned by Kashiwara [Ka, Proposition 9.1.1]. Both bases Bcan and B(B; o+)
are positive with respect to the product and to the coproduct, i.e. for B = Bcan or B(B; o+)
and α, β ∈ B one has

αβ ∈ N[q±1] ·B
∆(α) ∈ N[q±1] ·B ⊗B.

Proof. The �rst statement is an observation directly following Theorem 3.4: in [Ka, Propo-
sition 9.1.1] the basis is {clambn, l,m, n ≥ 0} t {cldmbn, l, n ≥ 0,m > 0}. As B(B; o+) is
equal to Bcan up to powers of q, one needs only to prove the second statement for Bcan.
For positivity of multiplication, it is su�cient to check it on pairs of generators: there are
then 16 cases. All of them are straightforward; we provide some instances among the most
complicated cases where the right hand sides are in N[q±1] ·Bcan:

α+− · α−+ = α−+ · α+−, α+− · α−− = q−2α−− · α+−, α−− · α−+ = q2α−+ · α−−
α+− · α++ = q2α++ · α+−, α++ · α−+ = q−2α−+ · α++, α++ · α−+ = q−2α−+ · α++.

Once positivity is known for multiplication, the statement for comultiplication can be
checked on generators where it is straightforward. �

Remark 3.11. A direct proof of positivity using pictures is also easy and left to the reader.

4. Comodule structures, co-tensor products and braided tensor products

In this section we show that given any edge of S the skein algebra S (S) has a natural
structure of Oq2(SL(2))-comodule algebra. We show how to decompose this comodule into
�nite dimensional comodules. We then identify the image of the splitting homomorphism
using the Hochshild cohomology, and give a dual result using Hochshild homology. When S
is the result of gluing two surfaces S1 and S2 to two edges of an ideal triangle, we show that
the skein algebra S (S) is canonically isomorphic to the braided tensor product of S (S1)
and S (S2). In this section R = Z[q±1/2].
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4.1. Comodule. Suppose e is a boundary edge of a punctured bordered surface S. Recall
that by cutting out ofS a bigonB whose right edge is e and canonically identifyingS\int(B)
with S, we get an R-linear map

∆e : S (S)→ S (S)⊗S (B),

see Figure 7. Similarly cutting out of S a bigon B whose left edge is e and canonically
identifying S \ int(B) with S, we get an R-linear algebra homomorphism

e∆ : S (S)→ S (B tS) ≡ S (B)⊗S (S).

Proposition 4.1. (a) The map ∆e : S (S)→ S (S)⊗S (B) gives S (S) a right comodule-
algebra structure over the Hopf algebra S (B). Similarly e∆ gives gives S (S) a left comodule-
algebra structure over the Hopf algebra S (B).
(b) It holds e∆ = fl◦(IdS (S)⊗rot∗)◦∆e where fl(x⊗y) = y⊗x and rot∗ : S (B)→ S (B)

is the algebra involution de�ned by (35).
(c) If e1, e2 are two distinct boundary edges, the coactions on the two edges commute, i.e.

(∆e2 ⊗ id) ◦∆e1 = (fl⊗ id)◦(∆e1 ⊗ id) ◦∆e2 .

Proof. (a) The associativity of ∆e follows from the the commutativity of the splitting maps of
theorem 2.15(c). Applying (id⊗ ε) to Equation (37) and using the value of ε(α~η~µ) from (48),
we get that

(id⊗ ε)∆e(x) = x~µ = x, ∀x ∈ B(S, o).

Hence ∆e gives S (S) the structure of a right S (B)-comodule.
Recall that S (S) is a comodule-algebra over the bialgebra S (B), see e.g. [Kass, Propo-

sition III.7.2], if and only if the map ∆e : S (S)→ S (S)⊗S (B) is an algebra homomor-
phism. The last fact follows easily from the de�nition of ∆e.
(b) Observe that (rot∗ ⊗ rot∗) ◦∆op = ∆ ◦ rot∗.
(c) is clear from the de�nition. �

By identifying S (B) with Oq2(SL(2)) using Theorem 3.4, the above proposition also pro-
vides S (S) with the structure of a Oq2(SL(2))-comodule. More in general, we will use the
following terminology:

De�nition 2 (Surfaces with indexed boundary). A punctured bordered surface S has in-
dexed boundary if its boundary edges are partitioned into two ordered sets (the left and right
ones, with indices L and R respectively): eL1 , . . . e

L
n , e

R
1 , . . . e

R
m.

If S has indexed boundary then S (S) is naturally endowed with a structure of

(Oq2(SL(2))⊗n,Oq2(SL(2))⊗m)− bicomodule

by the left coaction ∆L : S (S)→ Oq2(SL(2))⊗n ⊗S (S) de�ned by

∆L := (Id⊗n−1
Oq2 (SL(2)) ⊗ eLn

∆) ◦ (Id⊗n−2
Oq2 (SL(2)) ⊗ eLn−1

∆) ◦ · · · ◦ (IdOq2 (SL(2)) ⊗ eL2
∆) ◦ eL1 ∆

and the right coaction

∆R := (∆eR1
⊗ Id⊗m−1

Oq2 (SL(2))) ◦ (∆eR2
⊗ Id⊗m−2

Oq2 (SL(2))) ◦ · · · ◦ (∆eRm−1
⊗ IdOq2 (SL(2))) ◦∆eR1

.

Furthermore notice that S (S) is not only a bicomodule but a bicomodule-algebra as each
of the above maps ∆eRi

or eLj ∆ are also morphisms of algebras.
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4.2. Quantum group Uq2(sl2). Recall that the quantized enveloping algebra Uq2(sl2) is the
Hopf algebra generated over the �eld Q(q1/2) by K±1, E, F with relations

(70) KE = q4EK, KF = q−4FK, [E,F ] =
K −K−1

q2 − q−2
.

The coproduct and the antipode are given by

∆(K) = K ⊗K, ∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1(71)

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF.(72)

We emphasize that Uq2(sl2) is de�ned over the �eld Q(q1/2). There is an integral version
UL
q2(sl2), de�ned by Lusztig [Lus], which is the R-subalgebra of Uq2(sl2) generated by K±1

and the divided powers E(n) := En

[n]!
, F (n) := Fn

[n]!
. Here [n]! =

∏n
i=1(q2i − q−2i)/(q2 − q−2).

One has a non degenerate Hopf pairing

(73) 〈·, ·〉 : Uq2(sl2)⊗R Oq2(SL(2))→ Q(q1/2).

This is a Hopf duality since it satis�es (with Sweedler's coproduct notation)

(74) 〈x, y1y2〉 =
∑
〈x′, y1〉〈x′′, y2〉, 〈x1x2, y〉 =

∑
〈x1, y

′〉〈x2, y
′′〉

The values of the form on generators are given by〈
K,

(
a b
c d

)〉
=

(
q2 0
0 q−2

)
,

〈
E,

(
a b
c d

)〉
=

(
0 1
0 0

)
,

〈
F,

(
a b
c d

)〉
=

(
0 0
1 0

)
.(75)

Lemma 4.2. The form (73) on UL
q2(sl2) is integral, i.e. it restricts to a map

UL
q2(sl2)⊗R Oq2(SL(2))→ R = Z[q±1/2].

Proof. It is enough to check that 〈E(n), x〉, 〈F (n), x〉 ∈ R for n ≥ 1 and x ∈ Oq2(SL(2)).
Since ∆(E(n)) =

∑n
i=0 q

2i(n−i)E(i) ⊗ E(n−i)Ki it is su�cient to check the statement for the
evaluations of E(i) and Kj on a, b, c, d where this is a straightforward computation. Similarly
for F (n). �

Recall that the rotation by 180◦ of the bigon induces the involution r : Oq2(SL(2)) →
Oq2(SL(2)), see Theorem 3.4. Let r∗ : Uq2(sl2) → Uq2(sl2) be the adjoint of the map r. We
will show that r∗ is equal to the map ρ of Lusztig's book [Lus, Chapter 19], which is used in
the study of canonical bases of quantum groups.
Let Uq2(sl2)−Mod (respectivelyMod−Uq2(sl2)) be the monoidal category of left (respec-

tively right) Uq2(sl2)-modules.

Lemma 4.3 (Left and right modules). (a) The map r∗ is an algebra antimorphism involution
and a coalgebra morphism, i.e. for x, y ∈ Uq2(sl2) one has

(r∗)2(x) = x r∗(xy) = r∗(y)r∗(x), ∆(r∗(x)) = (r∗ ⊗ r∗) ◦∆(x).

Explicitly, the value of r∗ on the generators is

(76) r∗(E) = q2KF, r∗(K) = K, r∗(F ) = q−2EK−1.
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(b) The map r∗ induces monoidal functors

LR : Uq2(sl2)−Mod→Mod− Uq2(sl2), and RL : Mod− Uq2(sl2)→ Uq2(sl2)−Mod

which are inverse to each other as follows: for each left (resp. right) module M the module
LR(M) (resp. RL(M)) is the right (resp. left) module whose underlying vector space is M
and on which the action of x ∈ Uq2(sl2) is given by, with on α ∈M ,

α · x := r∗(x) · α (resp. x · α := α · r∗(x)).

Remark 4.4. Formula (76) shows that r∗ is equal to ρ of [Lus, Chapter 19].

Proof. (a) Since r is a algebra involution and a co-algebra antimorphism by Theorem 3.4
and the Hopf pairing is non-degenerate, its dual r∗ is an algebra antimorphism involution
and a coalgebra morphism.
It is su�cient to compute r∗ on the generators where one can verify the values provided

in the statement. For instance:

〈r∗(E), a〉 = 〈E, a〉 = 0 = 〈q2KF, a〉 = 〈q2K ⊗ F, a⊗ a+ c⊗ b〉
〈r∗(E), b〉 = 〈E, c〉 = 0 = 〈q2KF, b〉 = 〈q2K ⊗ F, a⊗ b+ b⊗ d〉
〈r∗(E), c〉 = 〈E, b〉 = 1 = 〈q2KF, c〉 = 〈q2K ⊗ F, c⊗ a+ d⊗ c〉
〈r∗(E), d〉 = 〈E, d〉 = 0 = 〈q2KF, d〉 = 〈q2K ⊗ F, c⊗ b+ d⊗ d〉

The veri�cation for the pairings with a, b, c, d for r∗(F ) and r∗(K) are similar.
(b) LR and RL are functors as r∗ : Uq2(sl2)→ Uq2(sl2) is an algebra antimorphism; they

are inverse to each other as r∗ is an involution. Monoidality is a consequence of the fact that
r∗ is a coalgebra morphism. �

4.3. Module structure of S (S). As usual, the Hopf duality implies that every right (resp.
left) Oq2(SL(2))-comodule V has a natural structure of a left (resp. right) Uq2(sl2)-module,
via the following construction. For a ∈ Uq2(sl2) and v ∈ V , one has

(77) a · v :=
∑
〈a, b′〉v′, where ∆r(v) =

∑
v′ ⊗ b′.

To be precise, we have to replace V by V ⊗RQ(q1/2), since Uq2(sl2) is de�ned over Q(q1/2).
In particular, for an edge e of S the right comodule structure e∆ : S (S)→ S (S)⊗S (B)

gives S (S) ⊗R Q(q1/2) a left module structure over Uq2(sl2), and we want to understand
this module structure.
Fix an orientation o of the boundary ∂S. Recall that B(S; o) is an R-basis of S (S).

For each edge e let Be,d(S; o) ⊂ B(S; o) be the set of all α ∈ B(S; o) such that |α ∩ e| = d
and all the states on α ∩ e are signs +. Let Be(S; o) = ∪∞d=0Be,d(S; o). For α ∈ Be,d(S; o)
and ~η ∈ {±}d, let α(~η) be the same α except for the states of e ∩ α which are given by
s(xi) = ηi, where x1, . . . , xd are the points of α ∩ e listed in decreasing order. In particular
let αj := α(+,+, · · · ,+,−,−, . . . ,−) where the number of − is j. For example, α = α0.

Lemma 4.5 (Module structures of S (S) along an edge e). The left action of Uq2(sl2) on
S (S)⊗R Q(q1/2), dual to e∆, is:

Kleft(αj) = q2(d−2j)αj

Eleft(α0) = 0, and Eleft(αj) = [j]q2αj−1 mod F e
d−1
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Fleft(αd) = 0, and Fleft(αj) = [d− j]q2αj+1 mod F e
d−1

where F e
d−1 = F e

d−1(S (S) ⊗R Q(q1/2)) is the Q(q1/2)-span of elements β ∈ B(S; o) with
|β ∩ e| < d. The right action, dual to ∆e, is given by the left action of r∗(K), r∗(E), r∗(F )
(see Lemma 4.2).

Proof. By (37), ∆(α(~η)) =
∑

~ε∈{±}d α(~ε)⊗ α~ε~η where α~ε~η is de�ned in Figure 6. If we de�ne

inductively ∆[d] = (∆⊗ id⊗(d−2)) ◦∆[d−1] for d ≥ 3, with ∆[2] = ∆, then

∆[d](K) = K⊗d,(78)

∆[d](E) =
d∑
j=1

1⊗(j−1) ⊗ E ⊗K⊗(d−j),(79)

∆[d](F ) =
d∑
j=1

(K−1)⊗j ⊗ F ⊗ 1⊗d−j−1.(80)

Applying these to compute the Hopf pairing of K,E, F with α~ε~η we get

Kleft(α(~η)) = q2
∑
ηiα(~η),

Eleft(α(~η)) =
d∑
j=1

(δηj ,−)q2
∑d

k=j+1 ηkα(η1, · · · , ηj−1,+, ηj+1, · · · , ηd),

Fleft(α(~η)) =
d∑
j=1

(δηj ,+)q−2
∑j−1

k=1 ηkα(η1, · · · , ηj−1,−, ηj+1, · · · , ηd).

Now the main claim is a direct computation using relation (10). �

Let S have indexed boundary ∂S = {eL1 , . . . eLm, eR1 , . . . eRn} as explained in Subsection 4.1.
The Hopf duality gives S (S)⊗RQ(q1/2) an algebra bimodule structure over (Uq2(sl2)⊗n, Uq2(sl2)⊗m).
(Notice the inversion between left and right when passing to modules).
For each ~m ∈ Nm and ~n ∈ Nn, let B~m,~n(S; o) be de�ned as:

B~m,~n(S; o) =

(
m⋂
i=1

BeLi ,mi
(S; o)

)
∩

(
n⋂
j=1

BeRj ,nj
(S; o)

)
.

Let also, for each ~j ≤ ~m and ~h ≤ ~n (component-wise) and each α ∈ B~m,~n(S; o) let α~j,~h ∈
B(S; o) be the skein identical to α but for its state which is increasing and contains ~j (resp.
~h) signs − on the left (resp. right) edges.

Theorem 4.6. Suppose that S has indexed boundary ∂S = {eL1 , . . . eLn , eR1 , . . . eRm}.
(a) For each ~m ∈ Nm and ~n ∈ Nn and each α ∈ B~m,~n(S; o), the (Uq2(sl2)⊗n, Uq2(sl2)⊗m)-

bimodule generated by α (namely Uq2(sl2)⊗n ·α ·Uq2(sl2)⊗m) is irreducible and isomorphic to
V L
n1
⊗ · · · ⊗ V L

nn
⊗ V R

m1
⊗ · · · ⊗ V R

mm
, where V L

k (resp. V R
k ) is the irreducible left (resp. right)

module on Uq2(sl2) with highest weight k.
(b) As (Uq2(sl2)⊗n, Uq2(sl2)⊗m)-bimodules, we have

(81) S (S)⊗R Q(q1/2) =
⊕

Uq2(sl2)⊗n · α · Uq2(sl2)⊗m.
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where the sum is taken over all ~m ∈ Nm, ~n ∈ Nn, and all α ∈ B~m,~n(S; o). In particular, the
bimodule S (S) is a direct sum of �nite dimensional bimodules over (Uq2(sl2)⊗n, Uq2(sl2)⊗m).
(c) Furthermore the bimodule structure restricts to that of a (UL

q2(sl2)⊗n, UL
q2(sl2)⊗m)-

bimodule (where UL
q2(sl2) is the integral version of Uq2(sl2)) and a decomposition similar

to the above one holds:

(82) S (S) =
⊕

+
~j≤~m,~h≤~n

(
UL
q2(sl2)⊗n · α~j,~h · U

L
q2(sl2)⊗m

)
where the direct sum is taken over all ~m ∈ Nm, ~n ∈ Nn and all α ∈ B~m,~n(S; o), and the +~j,~h

symbol stands for the non direct sum.

Proof. (a) Fix mi, nj and α as in the statement and let JW (α) be the skein obtained by
inserting a JWmi

near eLi and a JWnj
near eRj for all i, j. By Example 3.8 it is clear that

α = JW (α) and by Lemma 4.5 that it is a highest weight vector of weight q2mi for the action
of the ith-copy of Uq2(sl2) for each i ≤ m; similarly it is a highest weight vector of weight
q2nj for the right action of the jth-copy of Uq2(sl2). Furthermore, by Lemma 4.5 and the fact
that the mth-Jones Wenzl projector kills the self-returns, the orbit of α is exactly the span
of the vectors JW (α~j,~h) with

~j ≤ ~m and ~h ≤ ~n.
(b) It is straightforward from a) and from Theorem 2.9.
(c) If a left (resp. right) Uq2(sl2)-module weight M (over Q(q1/2)) has a basis formed

by weight vectors over which the action of E(r), F (r), r ≥ 1 has coe�cients in R, then M
restricts to a UL

q2(sl2)-module; we claim that the basis B(S; o) of S (S) has this property.

Indeed since the structure of module is induced by the right (resp. left) comodule structure
on each edge and the Hopf pairing between Uq2(sl2) and Oq2(SL(2)), and since the comodule
structure is integral in the basis B(S; o), it is su�cient to observe that the Hopf pairing
between Uq2(sl2) and Oq2(SL(2)) = S (B) extends to a R-bilinear Hopf pairing between
UL
q2(sl2) in the basis B(B, o): this is the content of point (1) of Lemma 4.2.
To prove that the direct sum decomposition still holds, let

B<
~m,~n(S; o) := {α ∈ B(S; o)|#(α ∩ eLi ) ≤ mi,#(α ∩ eRj ) ≤ nj,∀i ≤ m,∀j ≤ n} \B~m,~n(S; o).

To prove the claim, we will show that for each α ∈ B~m,~n(S; o), the following holds:

(
R ·B<

~m,~n(S; o)
)⋂ +

~j≤~m,~h≤~n

(
UL
q2(sl2)⊗n · α~j,~h · U

L
q2(sl2)⊗m

) = {0}.

We start by remarking that if α ∈ B~m,~n(S; o), then α = JW (α) and so, over Q(q1/2), its
orbit is a direct summand of S (S) and thus it has trivial intersection with the R-span of
B<
~m,~n(S; o): (

R ·B<
~m,~n(S; o)

)⋂(
Uq2(sl2)⊗n · α · Uq2(sl2)⊗m

)
= {0}.

Furthermore, by the point (b), given ~j ≤ ~m,~h ≤ ~n, there exist c(~j,~h) ∈ R \ 0 and

`(~j,~h) ∈ R ·B<
~m,~n(S; o) such that c(~j,~h)α~j,~h + `(~j,~h) is in the orbit of α:

c(~j,~h)α~j,~h + `(~j,~h) ∈ UL
q2(sl2)⊗n · α · UL

q2(sl2)⊗m.
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Now suppose that for some li ∈ UL
q2(sl2)⊗m and ri ∈ UL

q2(sl2)⊗n and some ~ji,~hi it holds∑
i

li · α~ji,~hi · ri ∈ R ·B
<
~m,~n(S; o) \ {0}.

Then, multiplying by
∏

i c(
~ji,~hi) (which gives a non-zero vector as S (S) is free as a R-

module) we also get that
∑

i li · α · ri ∈ R · B<
~m,~n(S; o) \ {0}, which as already argued is

impossible.
�

Example 4.7. Let B be the bigon whose edges el and er are declared to be respectively of
type L and R. Then by Theorem 3.4, S (B) is the right and left module Uq2(sl2)-module
Oq2(SL(2)): the left action is induced by the right comodule structure coming from eRr and
the right action from eLl . If we let B

R be the bigon where both el and er are declared to be
of type R (right), then S (BR) is a left (Uq2(sl2))⊗2-module; the action of x ⊗ y on a skein
b ∈ S (BR) is given by

(x⊗ y) · b = x · b · r∗(y)

where r∗(y) is the algebra antimorphism provided in Lemma 4.3 and the left and right actions
are those on S (B) described above.

4.4. Co-tensor product. Suppose U is a coalgebra over a ground ring R. Assume M is a
left U -comodule with coaction ∆M : M → U⊗RM , and N a right U -comodule with coaction
∆N : N → N ⊗R U . Then the cotensor product N�UM is

N�UM := {v ∈ N ⊗M | (∆N ⊗ idM)(v) = (idN ⊗∆M)(v)}.

Cotensor product is a special case of the following notion of Hochshild cohomology. Assume
V is a R-module with a left U -coaction and a right U -coaction:

∆r : V → V ⊗ U, l∆ : V → U ⊗ V.

The 0-th Hochshild cohomology of V is de�ned by

HH0(V ) = {x ∈ V | ∆r(x) = fl(l∆(x)),

where fl : V ⊗ U → U ⊗ V is the �ip fl(x⊗ y) = y ⊗ x.
With M and N as above, de�ne a left U -coaction and a right U coaction on N ⊗RM by

∆r : N ⊗RM → N ⊗RM ⊗R U, ∆r(n⊗m) =
∑

n′ ⊗m⊗ u′ if ∆N(n) =
∑

n′ ⊗ u′

l∆ : N ⊗RM → U ⊗R N ⊗RM, l∆(n⊗m) =
∑

u′′ ⊗ n⊗m′′ if ∆M(m) =
∑

u′′ ⊗m′′.

Then the cotensor product N�UM = HH0(N ⊗RM).

4.5. Splitting as co-tensor product and Hochshild cohomology. Suppose c1, c2 are
distinct boundary edges of a punctured bordered surface S′ and S = S′/(c1 = c2), with c ⊂
S being the common image of c1 and c2. The splitting homomorphism gives an embedding
θc : S (S) ↪→ S (S′) and we will make precise the image of θc.
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Figure 13. (a) The middle shaded part is the bigon, while the left and the
right shaded parts are part of S′. Gluing c1 = el gives the right coaction ∆r

and gluing er = c2 gives the left coaction l∆. (b) Element x~ν~µ ∈ S (S′). The
horizontal lines are part of x. Note the order of indices.

Theorem 4.8. Suppose c1, c2 are distinct boundary edges of a punctured bordered surface S′

and S = S′/(c1 = c2). The splitting homomorphism

(83) θc : S (S) ↪→ S (S′).

maps S (S) isomorphically onto the Hochshild cohomology HH0(S (S′)), which is a S (B)-
bimodule via the left coaction l∆ := c2∆ and the right coaction ∆r := ∆c1 (see Figure 13(a)).
In particular, if c1 is a boundary edge of S′1 and c2 is a boundary edge of S′2 which is

disjoint from S′1, and S = (S′1 t S′2)/(c1 = c2), then θc maps S (S) isomorphically onto
the cotensor product of S (S′1) and S (S′2) over S (B).

Proof. Let us identify S (S) with its image under θc. From the splitting formula (27) it
is easy to see that S (S) ⊂ HH0(S (S′)). Let us prove the converse inclusion. Assume
0 6= v ∈ HH0(S (S′)). By de�nition, this means

(84) ∆r(v)− fl(l∆(v)) = 0.

Choose an orientation o of ∂S and an orientation of c. Then o and the orientation of c1

and c2 induced from c give an orientation o′ of ∂S′. Recall that B(S′; o′) is a free R-basis
of S (S′). Let B̃(S′; o′) be the set of all isotopy classes x of o′-ordered ∂M ′-tangle diagrams
which are increasingly stated on every boundary edge except for c1 and c2. If ~µ is a state
of x ∩ c1 and ~ν is a state of x ∩ c2, let x~ν~µ be the stated o′-ordered ∂M ′-tangle diagram
whose states on x ∩ c1 and x ∩ c2 are respectively ~µ and ~ν. See Figure 13(b). If ~µ and ~ν are

increasing, then x~ν~µ ∈ B(S′, o′) is a basis element. For each i = 1, 2 let Sx∩ci and S
↑
x∩ci be

respectively the set of all states and the set of all increasing states of x ∩ ci. Then

B(S′, o′) = {x~ν~µ | x ∈ B̃(S′, o′), ~µ ∈ S↑x∩c1 , ~ν ∈ S
↑
x∩c2}.

Using the above R-basis B(S′; o′) of S (S′), we can present v ∈ S (S′) in the form

(85) v =
∑

x∈X(v)

∑
~µ∈S↑x∩c1

∑
~ν∈S↑x∩c2

coef(v, x~ν~µ) x~ν~µ,

where X ⊂ B̃(S′; o′) is a minimal �nite set, so that for each x ∈ X, there are ~µ, ~ν such that
the coe�cient coef(v, x~ν~µ) is non-zero.
Let m(v) = max{|x ∩ c1|, |x ∩ c2|, x ∈ X(v)}. We show by induction on m(v) that

v ∈ S (S).
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For i = 1, 2 let Xi(v) = {x ∈ X(v), |x ∩ ci| = m}. If x ∈ X1(v) ∩X2(v), then |x ∩ c1| =
|x ∩ c2| = m(v), and there is an element x̄ ∈ B(S, o) such that x has coe�cient non-zero in
the result of splitting x̄ along c. From the de�nition of the splitting map we have

(86) coef(θ(x̄), x~τ~τ ) = 1,

where ~τ = (+)m is the state consisting of m plus signs. Let

v′ = v −
∑

x∈X1(v)∩X2(v)

coef(v, x~τ~τ ) θ(x̄).

If m(v′) < m(v) then we are done by induction. Assume that m(v′) = m(v). One of
X1(v′), X2(v′) is not empty, and without loss of generality assume X2(v′) 6= ∅. Formula (85)
for v′ has the form

(87) v′ =
∑

x∈X(v′)

∑
~µ∈S↑x∩c1

∑
~ν∈S↑x∩c2

coef(v′, x~ν~µ) x~ν~µ,

and because of (86) we can assume that there is no xττ on the right hand side of (87).
Let pc2m : S (S′)→ S (S′) be the projection onto the homogeneous part Gc2

m(S (S′)), and
perm : S (B)→ S (B) be the projection onto the homogeneous part Ger

m(S (B)), see the end
of Section 2.10. Explicitly, for x ∈ X(v′) we have

(88) pc2m(x~ν~µ) =

{
0 if ~ν 6= ~τ

x~τ~µ if ~ν = τ,
perm(α~ν~µ) =

{
0 if ~µ 6= τ

α~ν~τ if ~µ = ~τ .

From Formula (37) for the coaction, we have, for x ∈ X(v′) and (~ν, ~µ) 6= (~τ , ~τ),

x~ν~µ
∆r−→

∑
~η∈Sx∩c1

x~ν~η ⊗ α~η~µ
p
c2
m⊗perm−→ 0(89)

x~ν~µ
l∆−→

∑
~η∈Sx∩c2

α~ν~η ⊗ x~η~µ
fl−→
∑
~η

x~η~µ ⊗ α~ν~η
p
c2
m⊗perm−→

{
0 if x 6∈ X2(v′)

x~τ~µ ⊗ α~ν~τ if x ∈ X2(v′).
(90)

It follows that

0 = (pc2m ⊗ perm)(fl(l∆(v′))−∆r(v
′)) =

∑
x∈X2(v′)

∑
~µ∈S↑x∩c1

∑
~ν∈S↑x∩c2

coef(v′, x~ν~µ) x~τ~µ ⊗ α~ν~τ .

As the right hand side is a linear combination of elements of a basis, all the coe�cients
v there are 0. This means X2(v′) = ∅, a contradiction. Thus m(v′) < m(v) and we are
done. �

Remark 4.9. Theorem 4.8 holds also if we change the base ring to C by evaluating q to a
non-zero complex number.

Using the above result together with Theorem 4.6 we can deduce a similar result for
Uq2(sl2)-modules. Recall that for a bi-module V over a Q(q1/2)-algebra U the 0-homology
group is

HH0(V ) = V/Q(q1/2)-span〈a · v − v · a | a ∈ U, v ∈ V 〉.
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Theorem 4.10. Suppose c1, c2 are distinct boundary edges of a punctured bordered surface S
′

and S = S′/(c1 = c2), with c being the common image of c1 and c2. Then the composition

(91) S (S)⊗R Q(q1/2)
θc−→ S (S′)⊗R Q(q1/2)→ HH0(S (S′)⊗R Q(q1/2))

is an isomorphism of Q(q1/2)-vector spaces. Here S (S′) ⊗R Q(q1/2) is a Uq2(sl2)-bimodule
via the dual actions of ∆c1 and c2∆.
In particular, if S′ = S1 t S2 with c1 ⊂ S1 and c2 ⊂ S2, then the map in (91) is an

isomorphism between S (S)⊗RQ(q1/2) and (S (S1)⊗RQ(q1/2))⊗Uq2 (sl2)(S (S2)⊗RQ(q1/2)).

Proof. The decomposition of S (S′)⊗RQ(q1/2) given by part (b) of Theorem 4.6 shows that
it is su�cient to prove that if V R

m2
(resp. V L

m1
) is the irreducible m2 + 1-dimensional (resp.

m1 +1-dimensional) right (resp. left) Uq2(sl2)-module, then the composition of natural map

(92) HH0(V L
m1
⊗ V R

m2
) ↪→ V L

m1
⊗ V R

m2
� HH0(V L

m1
⊗ V R

m2
)

is an isomorphism of vector spaces. We will see that this follows from the fact that every
�nite-dimensional Uq2(sl2)-module V is equivalent to its dual V ∗.
First observe that since the pairing between Oq2(SL(2)) and Uq2(sl2) is non degenerate,

HH0(V L
m1
⊗ V R

m2
) can be equivalently de�ned as

HH0(V L
m1
⊗ V R

m2
) = {v ⊗ w ∈ V L

m1
⊗ V R

m2
|x · v ⊗ w = v ⊗ w · x, ∀x ∈ Uq2(sl2)}.

Then using the isomorphism between V R
m2

and (V L
m2

)∗ we have :

HH0(V L
m1
⊗ V R

m2
) = HomUq2 (sl2)(V

L
m2
, V L

m1
) = δm1,m2Q(q1/2)

by Schur's lemma.
Now let's take the dual of the above equation and get:

(93) (HH0(V L
m1
⊗ V R

m2
))∗ ↪→ (V R

m2
)∗ ⊗ (V L

m1
)∗ � (HH0(V L

m1
⊗ V R

m2
))∗

where the �rst arrow maps an element of (HH0(V L
m1
⊗V R

m2
))∗ to some f ∈ (V L

m1
⊗V R

m2
)∗ such

that f(x · v ⊗ w) = f(v ⊗ w · x) for all x ∈ Uq2(sl2) and v ⊗ w ∈ V L
m1
⊗ V R

m2
. Using again

the isomorphism between (V R
m2

)∗ and V L
m2

we have that the image of (HH0(V L
m1
⊗ V R

m2
))∗ in

V L
m2
⊗ (V L

m1
)∗ is HomUq2 (sl2)(V

L
m1
, V L

m2
) = δm1,m2Q(q1/2) by Schur's lemma.

To conclude, observe that if m1 = m2 then the image of the inclusion HH0(V L
m1
⊗V R

m1
) ↪→

V L
m1
⊗ V R

m1
' V L

m1
⊗ (V L

m1
)∗ = Hom(V L

m1
, V L

m1
) is given by the multiples of the identity map.

But the kernel of the projection V L
m1
⊗ V R

m1
� HH0(V L

m1
⊗ V R

m1
) is the sub vector space of

Hom(V L
m1
, V L

m1
) spanned by the matrices of the form xM−Mx where x represents the action

of an element of Uq2(sl2) and M ∈ Hom(V L
m1
, V L

m1
); thus it is contained the set of matrices

with zero trace and so the projection of HH0(V L
m1
⊗ V R

m1
) in HH0(V L

m1
⊗ V R

m1
) is nonzero.

�

Remark 4.11. By the splitting theorem and Proposition 4.10, S (S) is both a submodule
and a quotient module of S (S′).

Example 4.12. Clearly, if in Theorem 4.10 c1 = eRi and c2 = eLj belong to two distinct
connected components of S′, then one can restate the HH0 simply as a tensor product over
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a copy of Uq2(sl2) acting on the left on the skein algebra of one component and on the right
on the other.
In particular, if S is obtained by glueing a bigon B along its right edge to a left edge of

S′ then S (S) = S (S′)⊗Uq2 (sl2) S (B) is isomorphic to S (S′) as it can be seen directly by

Theorem 2.15.
If BR is the bigon whose edges are both declared to be of type R (right), then S (BR) is

a left module over Uq2(sl2)⊗2 (see Example 4.7). Then glueing BR to S′ along one edge of
type L, shows that

S (S) = S (S′)⊗Uq2 (sl2) S (BR).

The resulting surface S is still homeomorphic to S′ but the edge on which the glueing
has been performed has been transformed from an edge of type L to one of type R. This
corresponds to applying Lemma 4.3 to the module structure coming from that edge.

Remark 4.13. If c′1, c
′
2 are two other edges of ∂S

′ (and then of ∂S), (91) is an isomorphism
of Uq2(sl2)-modules for the structure associated to c′1 and c

′
2. Furthermore the theorem can be

applied independently to glue also c′1 and c
′
2 and the �nal isomorphism between S (S′/(c1 =

c2, c
′
1 = c′2))⊗Q(q1/2) and HH0(S (S′)⊗Q(q1/2)) (with respect to the Uq2(sl2)⊗2-bimodule

structure) does not depend on the order in which the glueing was performed.

4.6. Braided tensor product. Let U be a dual quasitriangular Hopf algebra. Assume
A is an algebra admitting two right U -comodule-algebra structures ∆1 : A → A ⊗ U and
∆2 : A→ A⊗ U which commute, i.e.

(94) (∆1 ⊗ IdU) ◦∆2 = (IdA ⊗ fl) ◦ (∆2 ⊗ IdU) ◦∆1

where fl : U ⊗U → U ⊗U is the �ip operator. Denote the common operator of (94) by ∆12.
Observe that since ∆1 and ∆2 commute, A can be endowed with a right U -comodule

structure ∆ := ∆1∗∆2 : A→ A⊗ U de�ned by

(95) ∆(x) =
∑

x′ ⊗ u1u2 if ∆12(x) =
∑

x′ ⊗ u1 ⊗ u2.

However ∆ : A→ A⊗U is not an algebra homomorphism, i.e. A is not a right U -comodule
algebra with respect to ∆, even though it is a right U -comodule algebra with respect to each
of ∆1 and ∆2. So we de�ne a new product. For x, y ∈ A let

(96) x∗y =
∑

x′y′ρ(u⊗ v) if ∆2(x) =
∑

x′ ⊗ u,∆1(y) =
∑

y′ ⊗ v.

It is easy to check that ∗ gives A a new associative product, and we call A with this new
product the self braided product of ∆1 and ∆2 and denote it ⊗A.

Lemma 4.14. With respect to the product ∗ and the right U-comodule given by ∆ = ∆1∗∆2,
the algebra A is a right U-comodule-algebra.

Proof. We have to show that for x, y ∈ A one has

(97) ∆(x∗y) = ∆(x)∗∆(y).
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Let us now write ∆12(x) and ∆12(y) as

∆12(x) =
∑

x′ ⊗ u1 ⊗ u ∈ A⊗ U ⊗ U

∆12(y) =
∑

y′ ⊗ v ⊗ v2 ∈ A⊗ U ⊗ U.

Using the commutativity of ∆1 and ∆2 and a simple calculation, we obtain

∆(x∗y) =
∑

ρ(u′′ ⊗ v′′)x′y′ ⊗ u1v
′u′v2(98)

∆(x)∗∆(y) =
∑

ρ(u′ ⊗ v′)x′y′ ⊗ u1u
′′v′′v2,(99)

where ∆(u) =
∑
u′ ⊗ u′′,∆(v) = v′ ⊗ v′′ are coproducts in U . The right hand sides of

(98) and (99) are equal thanks to (60). This proves (97). For those who are familiar with
graphical calculations in Hopf algebras, we provide a graphical proof in Figure 14. �

∆(·∗·) = = = = = =

= = = = = ∆(·) ∗∆(·)

Figure 14. The proof of the compatibility of ∆ and ∗. The diagrams are to be
read from bottom to top, the thick (resp. thin) strands are A-colored (resp. U -
colored), the crossings are �ips, the white (resp. gray) solid dots represent ∆1

(resp. ∆2), the rectangle represents the co-R-matrix ρ, the black (resp. white)
triangle is the product (resp. coproduct) of U , the thick trivalent vertex is
the initial product in A. The equalities follow in order from: compatibility
of ∆i with the product of A, ∆1 commutes with of ∆2, coassociativity of ∆i,
associativity of the product in U , equation (60), coassociativity of ∆i, ∆1

commutes with of ∆2,associativity of the product in U .

Example 4.15 (Braided tensor product). The �rst example of the above structure is the
well-known braided tensor product of two right comodule-algebras, which we describe in de-
tails for the reader's convenience. Suppose A1, A2 are right comodule-algebras over a dual
quasitriangular Hopf algebra U . The tensor product A = A1⊗RA2 has two commuting right
U -comodule structures. Namely ∆1 = (IdA1 ⊗ fl) ◦ (∆A1 ⊗ IdA2) and ∆2 = IdA1 ⊗∆A2 .
By the above construction, A has the structure of a right U -comodule algebra, with the

coaction ∆ = ∆1∗∆2 and the product ∗. Explicitly, for x ∈ A1 and y ∈ A2, the coaction is

∆(x⊗ y) =
∑

(x′ ⊗ y′)⊗ uv if ∆A1(x) =
∑

x′ ⊗ u,∆A2(y) =
∑

y′ ⊗ v.
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Let us now describe the product ∗. Identify A1 with A1 ⊗ {1} and A2 with {1} ⊗ A2 (as
subsets of A1 ⊗R A2). Then the new product (96) is given by

(100) x∗y =


xy if x, y ∈ A1 or x, y ∈ A2

x⊗ y if x ∈ A1, y ∈ A2∑
ρ(u⊗ v)(y′ ⊗ x′) if x ∈ A2, y ∈ A1,

where ∆A2(x) =
∑
x′ ⊗ u,∆A1(y) =

∑
y′⊗, and ρ is the co-R-matrix.

The algebra A1 ⊗R A2 with this new product is called the braided tensor product of A1

and A2, and is denoted by A1⊗UA2. For details see [Maj].

Example 4.16 (Transmutation). Assume that U is a dual quasitriangular Hopf algebra and
let A = U . Then ∆2 := ∆ : A → A ⊗ U gives A a right U -comodule algebra structure. To
get another right U -comodule structure one converts the standard left comodule structure
to a right one by

(101) ∆1(x) :=
∑

x′ ⊗ S(u) if ∆(x) =
∑

u⊗ x′.

However ∆1 is not compatible with the algebra structure of A. One can twist the product
of A using the co-R-matrix ρ of U to make both ∆1 and ∆2 right comodule algebras as
follows. De�ne a new product on A using the common value of (60), i.e.

(102) x� y =
∑

ρ(x′ ⊗ y′)x′′y′′, if ∆(x) =
∑

x′ ⊗ x′′,∆(y) =
∑

y′ ⊗ y′′.

It is easy to check that this gives A a new product, with which both ∆1 and ∆2 give A right
U -comodule algebra structures. Besides, ∆1 and ∆2 commute.
Our construction now gives A a right U -comodule algebra structure whose coaction ∆ =

∆1∗∆2 and whose product ∗ are given by

∆(x) =
∑

x′′ ⊗ S(x′)x′′′ if (∆⊗ IdU) ◦∆(x) =
∑

x′ ⊗ x′′ ⊗ x′′′(103)

x∗y =
∑

x′′y′′ρ(S(x′x′′′)⊗ S(y′)) if ∆(y) =
∑

y′ ⊗ y′′.(104)

It turns out that the coaction (103) is exactly the right coadjoint action, see [Maj, Example
1.6.14] and the product ∗ is exactly the covariantized product of [Maj, Example 1.6.14].
The algebra A, with this new product ∗ and the original coproduct ∆, is known as the
transmutation of A, and is a braided group in the braided category of U -comodules, see [Maj].

4.7. Attaching an ideal triangle is a braided tensor product. Suppose e, e1, e2 are
oriented edges of an ideal triangle P3 as depicted in Figure 15.
Let S be a (possibly disconnected) punctured bordered surface, with two boundary edges

a1, a2 ⊂ ∂S. De�ne S = (StP3)/(e1 = a1, e2 = a2), see Figure 15. (A special case is when
S = S1 tS2 and a1 ⊂ S′, a2 ⊂ S′′.) For i = 1, 2 the algebra S (S) has a right comodule
algebra structure ∆i := ∆ai : S (S)→ S (S)⊗Oq2(SL(2)). The two coactions ∆1 and ∆2

commute, see Lemma 4.1. Hence we can de�ne the self braided tensor product ⊗S (S) of
∆1 and ∆2, which gives S (S) a new right comodule algebra structure over Oq2(SL(2)). On
the other hand, ∆e : S (S) → S (S) ⊗ Oq2(SL(2)) gives S (S) a right comodule algebra
structure over Oq2(SL(2)).
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Figure 15. Left: Ideal triangle P3. Middle: Glueing S and P3 by a1 = e1

and a2 = e2 to get S. Right: tangle diagram x ∈ S (S) and its image
f(x) ∈ S (S)

Theorem 4.17. The right Oq2(SL(2))-comodule algebra S (S) is naturally isomorphic to
the self braided tensor product ⊗S (S), de�ned with the co-R-matrix ρ′ of (66).
In particular when S = S1 tS2 and a1 ⊂ S1, a2 ⊂ S2, the right comodule algebra S (S)

over Oq2(SL(2)) is naturally isomorphic to the braided tensor product S (S1)⊗S (S2).

Proof. Let o+ be the positive orientation of the boundaries of S and S. In the proof all
tangle diagrams will have positive height order.
For a stated ∂S-tangle diagram x let f(x) be the stated ∂S-tangle diagram obtained from

x by extending the strands ending on a1 t a2 until they end on e, with order on e given by
its positive direction, see Figure 15. We require that f(x) has no crossing inside P3 and this
makes f(x) unique up to isotopy. Since f clearly preserves the de�ning relations of a stated
skein algebra, we can extend it to an R-linear map f : S (S)→ S (S).
Recall that ⊗S (S) is the same S (S) with a new product ∗ given by (96).

Lemma 4.18. The map f : ⊗S (S)→ S (S) is an algebra homomorphism.

Proof. Let x, y be stated ∂S-tangle diagrams.

Figure 16. xy, f(xy), and f(x)f(y)

We present xy, f(xy), f(x)f(y) schematically as in Figure 16. By splitting along the dashed
line in the picture of f(x)f(y) and using the counit property which says u =

∑
u′ε(u′′), we

get, with ∆2(x) =
∑
x′ ⊗ u and ∆1(y) =

∑
y′ ⊗ v,

f(x)f(y) =
∑

⊗ ε
( )

=
∑

f(x′y′)ρ′(u⊗ v), using co-R-matrix ρ′ of (66)

= f(x∗y) by (96).

Thus f is an algebra homomorphism. �
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It remains to show that f is an R-linear isomorphism. For l ∈ N let Fl(S (S)) =
F a1,a2
l (S (S)) and Fl(S (S)) = F a1,a2

l (S (S)) be the �ltrations de�ned in Subsection 2.10.
In other words, Fl(S (S)) is the R-submodule spanned by stated tangle diagrams α such
that I(α, a1) + I(α, a2) ≤ l, and similarly for Fl(S (S)). Denote by Gr∗ the corresponding
graded R-modules. It is clear that f preserves the �ltrations Fl. It is enough to show that
Gr(f) is a bijection.
Let Bm,n be the set of isotopy classes of simple ∂S-tangle diagrams α such that I(α, a1) =

m, I(α, a2) = n and α is increasingly stated on each boundary edge, except for a1 and a2

where it is not stated. Then

Grl(S (S)) =
⊕

m+n=l, x∈Bm,n

V (x)(105)

Grl(S (S)) =
⊕

m+n=l, x∈Bm,n

W (x).(106)

Here V (x) is the R-submodule of Grl(S (S)) spanned by α ∈ B(S; o+) such that α = x if
we forget the states on a1 ∪ a2, and W (x) is the R-submodule of Grl(S (S)) spanned by
z ∈ B(S; o+) such that z ∩S = x. It is enough to show that Gr(f) is an isomorphism from
V (x) to W (x) for x ∈ Bm,n.
Note that both V (x) and W (x) are free R-modules, and both have rank (m + 1)(n + 1).

Indeed there are m+ 1 increasing states on x∩ a1 and n+ 1 increasing states on x∩ a2 and
these can be chosen independently, thus rkR(V (x)) = (m + 1)(n + 1). For what concerns
W (x), observe that if z ∈ B(S; o+) such that z ∩S = x then z ∩ P3 consists of k arcs (for
some k ∈ [0,min(m,n)]) connecting e1 and e2, m − k arcs connecting e1 and e, and �nally
n − k arcs connecting e2 and e; furthermore z ∩ e is increasingly stated so that there are
exactly (m+ n− 2k + 1) such z. Thus we have:

rkR(W (x)) =

min(m,n)∑
k=0

(m+ n− 2k + 1) = (m+ 1)(n+ 1).

The reordering relation (10) implies the relation in Figure 17, which converts arcs connecting
e1 and e2 to arcs with one end in e. This shows that Gr(f) : V (x)→ W (x) is surjective.

Figure 17.

Since both V (x) and W (x) are free R-modules having the same rank, we conclude that
Gr(f) : V (x)→ W (x) is an isomorphism. This completes the proof of the theorem. �

4.8. Examples: Polygons, punctured bigons, and punctured monogons.

Example 4.19 (Polygon). The polygon Pn is the standard disc with n punctures on its
boundary removed. Note that the triangle P3 is the result of attaching an ideal triangle to
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two bigons. By Theorem 4.17 we have

(107) S (P3) ∼= Oq2(SL(2))⊗Oq2 (SL(2))Oq2(SL(2)),

where each copy of Oq2(SL(2)) is a right Oq2(SL(2))-comodule algebra via the coproduct.
Consequently, S (P3) ∼= Oq2(SL(2))⊗ROq2(SL(2)) asR-modules, and its algebra structure is
described by (100). From here one can get a presentation of S (P3). In [Le2], a presentation
of S (P3) was obtained by brute force calculation.
The n-gon Pn is the result of attaching an ideal triangle to the disjoint union of Pn−1 and

the bigon. By induction, we obtain

Corollary 4.20. One has

S (Pn) ∼= Oq2(SL(2))⊗ · · ·⊗Oq2(SL(2)),

where there are (n− 1) copies of Oq2(SL(2)).

Example 4.21 (Punctured bigons). Let Bn be the bigon B with n interior punctures
removed. For example B0 = B. Like in the case of B, we will show that S (Bn) has a
natural structure of a Hopf alagebra where all the operations can be de�ned geometrically.
Recall that we denote el and er the left and right boundary edges of B.

Figure 18. The embedding of the 4-punctured bigon B4 into B8 and the
splitting homomorphism. The composition gives the coproduct.

Let ι : Bn ↪→ B2n be the inclusion identifying Bn with the complement of n closed
disjoint arcs, each connecting two punctures of the 2n-punctures of B2n; See Figure 18. Let
∆ : S (Bn) → S (Bn) ⊗ S (Bn) be the map induced by ι and then splitting along the
vertical arc connecting the two boundary ideal vertices of B2n and identifying the two halves
with Bn.
Let also ε : S (Bn) → R be the map obtained by including Bn in B0 = B and then

applying ε : S (B)→ R.
Finally de�ne S : S (Bn)→ S (Bn) as the R-linear map whose value on a stated tangle

α in Bn × (−1, 1) is obtained by �rst switching all the states η to −η and all the framing
vectors v to −v, then rotating α by 180◦ around the axis passing through the two boundary
ideal vertices and �nally multiplying the result by (

√
−1 q)(δel (α)−δer (α)) (where δe(α) was

de�ned in Subsection 2.10 as the sum of the states on α∩ e). It is easily checked that all the
de�ning relations (7)-(10) are preserved so that S is well-de�ned.

Proposition 4.22. For each n ≥ 0 the skein algebra S (Bn), endowed with ∆, ε, S, is a
Hopf algebra.

Proof. From the de�nition of the splitting homomorphism it is clear that ∆ is an algebra
homomorphism. The coassociativity of ∆ is a direct consequence of the fact that applying
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twice ι induces the same morphism as the identi�cation of Bn with the complement of n
disjoint arcs in B3n each containing 3 punctures as depicted here:

The map ε is a morphism of algebras by its de�nition; to verify that (ε⊗ Id)◦∆ = Id observe
that if in Figure 18 we �ll the left punctures then we obtain the initial Bn.
That S is an antimorphism is a consequence of the fact the revolution by 180◦ about the

the axis connecting the two boundary vertices reverses the height order in Bn × (−1, 1).
We are left to prove that

(108) (S ⊗ Id) ◦∆ = (Id⊗ S) ◦∆ = ε,

and since S is an antimorphism, it is enough to check this identity on a set of generators.
From relation (10) we get that the set of horizontal arcs, with all possible states, generates
S (Bn). If αηµ is a horizontal arc with state η on the left and state µ on the right, then the
de�nition gives

S(αηη) = αη η and S(αηη) = −q2ηαηη,

so that on B0 = B, S coincides with the antipode de�ned in (51). Now Identity (108) for
αηµ follows from the same identity for the antipode in S (B) = Oq2(SL(2)). �

Remark 4.23. (a) Since Bn is the result of attaching 2n ideal triangles to n + 1 bigons,
Theorem 4.17 can be used to show that as R-algebras S (Bn) ∼= Oq2(SL(2))⊗(n+1) where
the tensor product is over R and the algebra structure of Oq2(SL(2))⊗(n+1) is the unique one
determined by:
(i) the subset Ai = 1⊗(i−1) ⊗R Oq2(SL(2)) ⊗R 1⊗(n+1−i) ⊂ Oq2(SL(2))⊗(n+1) is isomorphic

to Oq2(SL(2)) as R-algebras for each i = 1, . . . , n+ 1, and
(ii) for a ∈ Ai and b ∈ Aj with i < j, one has ab = a⊗ b and

ba =
∑

ρ̄′(b′ ⊗ a′)ρ′(b′′′ ⊗ a′′′)a′′b′′(109)

where ρ′ is the co-R-matrix de�ned by (66) and ρ̄′ is its inverse.
(b) For the case n = 1, Proposition 4.22 and a presentation of S (B1) were also indepen-

dently obtained in [Ko] via a direct calculation.

Example 4.24 (Punctured monogons). Let Mn be the monogon M with n punctures in
its interior removed, see Figure 19. Let ∆ : S (Mn) → S (Mn) ⊗ S (B) be the right
S (B)-comodule algebra structure induced by the only boundary edge ofMn.
Similarly S (Bn) has two commuting right comodule-algebra structures over S (B) in-

duced by el and er, let ∆1 be the one induced el and ∆2 be the one induced by er.
Like in the bigon case, let ι : Mn ↪→ M2n be the inclusion identifying Mn with the

complement of n disjoint arcs, each connecting two punctures of M2n. Observe that M2n

is the result of attaching an ideal triangle to two copies ofMn, see Figure 19. By Theorem
4.17 we have isomorphism of algebras S (M2n) = S (Mn)⊗S (Mn). Let ∆ : S (Mn) ↪→
S (M2n) = S (Mn)⊗S (Mn) be the map induced by ι∗ and this isomorphism.
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ι : ↪→ '

Figure 19. The inclusion ι :M4 ↪→M8 and the decomposition ofM8 in a
triangle and two copies of M4 used to �x the isomorphism S (M8) =
S (M4)⊗S (M4).

Proposition 4.25. (a) For each n ≥ 0 the algebra S (Mn) endowed with the map ∆ and the
map ε : S (Mn) → S (M0) = R induced by inclusion is a bialgebra object in the category
of Oq2(SL(2))-comodules (i.e. its product, coproduct, unit and counit are morphisms of
Oq2(SL(2))-comodules).
(b) The Oq2(SL(2)) comodule-algebra S (Mn) is isomorphic to the self braided tensor

product ⊗S (Bn−1). In particular S (M1) is isomorphic as a Hopf algebra to BSLq(2), the
�transmutation� of Oq2(SL(2)), or �braided version� or �covariant version� of Oq2(SL(2)) (see
[Maj] Examples 4.3.4 and 10.3.3).

Proof. (a) The inclusion ι induces an injective algebra homomorphism ι∗ : S (Mn) ↪→
S (M2n) = S (Mn)⊗S (Mn). As in the case of bigons, the coassociativity follows from the
fact that applying twice ι induces the same morphism as the identi�cation ofMn with the
complement of n disjoint arcs inM3n each containing 3 punctures as depicted here:

↪→ ↪→ .

The map ε is a morphism of comodule-algebras by its de�nition; to verify that (ε⊗Id)◦∆ = Id
observe that if in Figure 19 we �ll the left punctures then we obtain the initial Mn. The
last fact to verify is that ∆ is a morphism of comodules, i.e. denoting ∆ : S (Mn) →
S (Mn)⊗S (B) the right comodule structure, that

(∆⊗ Id) ◦∆ = (Id⊗ Id⊗m)(Id⊗ fl⊗ Id) ◦ (∆⊗∆) ◦∆,

where m : S (B) ⊗ S (B) → S (B) is the multiplication and fl is the �ip. Since ∆ is
a morphism of algebras, it is su�cient to check this on generators of Mn. For this we
refer to Figure 20, where we depict the case n = 1 but the proof is similar for other n.
Letting α(x, y) ∈ B(Mn, o) be the generator represented by a horizontal arc whose states
are y, x ∈ {±} depicted in the �gure; the equality in the �gure shows that we have:

∆(α(x, y)) = q
1
2α(+, y)⊗α(x,−)− q

5
2α(−, y)⊗α(x,+).

Also, from the de�nition of ∆ one computes ∆(α(x, y)) =
∑

ε,η α(η, ε) ⊗ (αηxαηy) where
αxy denote the standard generators of S (B). Now the veri�cation is a straightforward
computation.



46 FRANCESCO COSTANTINO AND THANG T. Q. LÊ

xy

= −q 5
2

xy

− +

+ q
1
2

xy

+ −

.

Figure 20. Re-expressing ∆(α(x, y)) as a braided tensor product. The equal-
ity is a consequence of (10).

(a) (b) ∆

( )
= ⊗

Figure 21. (a) The R-linear map T embeds B into M1 as shown, after

applying the map inv
−1

el
and rotating by π. (b) The right coaction of S (B)

on S (M1) is obtained by cutting on the dotted arc; in the �gure, a skein
x = T (a) is cut in three parts by the dotted arc, the mid one is T (a(2))
while the rightmost and leftmost are respectively S(a(1)) and a(3) so that their
product in the bigon cut out by the dotted curve is S(a(1))a(3). This shows
that the pullback of ∆ is the adjoint coaction.

(b) As Mn is obtained by attaching an ideal triangle to Bn−1, the claim follows from
Theorem 4.17. The isomorphism of S (M1) with BSLq(2) then follows from Example 4.16.
Let us make explicit the isomorphism.
Let T : S (B)→ S (M1) be theR-linear isomorphism obtained on a skein a by embedding

rot∗(inv
−1

el
(a)) (see Subsection 2.8) in the monogon through the embedding depicted in Figure

21 (a) and �nally extending the strands of rot∗(inv
−1

el
(a)) until they hit the boundary ofM1

(i.e. by applying the map f de�ned in the proof of Theorem 4.17). We claim that pulling back
through T the coaction of S (M1) we get the right adjoint coaction on Oq2(SL(2)) = S (B)
and pulling back the product ∗ on S (M1) we get the product ∗ on BSLq(2) de�ned in
Example 4.16:

∆coad = (T−1 ⊗ Id) ◦∆ ◦ T and ∗ = T−1 ◦ (· ∗ ·) ◦ (T ⊗ T ).

Using the de�nitions of T , of the antipode on S (B) (50) and of ∆, one veri�es directly
that (T−1⊗Id)◦∆◦T (x) = x′′⊗S(x′)x′′′ for any x ∈ Oq2(SL(2)) = S (B) (see Figure 21 (b)).
Then since ∗ and ∆ are compatible it is su�cient to check that the pullback of ∗ equals ∗ on
the generators of Oq2(SL(2)); this is a straightforward computation. A graphical explanation
is as follows. Observe that if x = T (a), y = T (b), then x ∗ y = (T (a ∗ b))(1)ε((T (a ∗ b))(2))
(this holds in general comodule algebras), so that we have:
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= ·ε

( )

and that the right hand side equals

T (a(2) · b(2))ρ
′(S(a(1))a(3) ⊗ S(b(1)))ε(b(3)) = T (a(2) · b(2))ρ

′(S(a(1))a(3) ⊗ S(b(1)))

where ρ′ was de�ned in (66). This proves that ∗ = T−1 ◦ (· ∗ ·) ◦ (T ⊗ T ). �

5. A lift of the Reshetikhin-Turaev operator invariant

In this section we show that a Reshetikhin-Turaev operator invariant of tangles can be
lifted to an invariant with values in Oq2(SL(2)). In this section R = Z[q±1/2].

5.1. Category of non-directed ribbon graphs. We will present the category of non-
directed ribbon graphs [Tu3], also known as framed tangles [Oh], in the form convenient for
us.
The bigon is canonically isomorphic (in the category of punctured bordered surface) to

the square S = [0, 1]× (0, 1). Under the isomorphism el and er are mapped respectively to
{0}×(0, 1) and {1}×(0, 1), and abusing notation we also denote {0}×(0, 1) and {1}×(0, 1)
respectively el and er. We identify S with S × {0} in M := S × (−1, 1). We have ∂M =
∂S × (−1, 1) = (el ∪ er)× (−1, 1).

Figure 22. Left: Square S = [0, 1] × (0, 1), with edges el and er. Middle:
tensor product β ⊗ β′. Right: composition β ◦ β′, which can be de�ned only
when |∂rβ| = |∂lβ′| .

Recall that in the de�nition of a ∂M -tangle we require the boundary points over any
boundary edge have distinct heights (see Subsection 2.4). If we change this requirement to:
all boundary points are in ∂S (in particular they all have the same height) we get the notion
of a ∂S-tangle. Formally, a ∂S-tangle is a framed compact 1-dimensional unoriented manifold
β properly embedded in M = S × (−1, 1) such that ∂β has height 0, i.e. ∂β ⊂ ∂S = el ∪ er,
and the framing at every boundary point of β is vertical. Let ∂rβ = β ∩ er and ∂lβ = β ∩ el.
Two ∂S-tangles are ∂S-isotopic if they are isotopic in the class of ∂S-tangles. If |∂rβ| = k and
|∂lβ| = l, then our notion of a ∂S-tangle is the notion of a non-directed ribbon (k, l)-graph
without coupons in [Tu3].
After an isotopy we can bring β to a generic position (with respect to the projection from

S× (−1, 1) onto S) and make the framing vertical everywhere. The projection of β together
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with the over/under information at every crossing, is called a ∂S-tangle diagram of β. The
isotopy class of β is totally determined by any of its diagrams.
The non-directed ribbon graph category is the category whose set of objects is N and a

morphism from k to l is an isotopy class of ∂S-tangle β such that |∂rβ| = k and |∂lβ| = l,
with the usual composition (see Figure 22). If the tangles are oriented, then one would get
the usual ribbon tangle category.
If β, β′ are two ∂S-tangles, de�ne their tensor product β ⊗ β′ as the result of putting β

above β′ as in Figure 22. Under the tensor product and the composition, morphisms of the
non-directed ribbon tangle category are generated by the �ve elementary ∂S-tangles depicted
in Figure 23.

Figure 23. Five elementary tangles

From the ribbon category of �nite-dimensional modules over the quantum group Uq2(sl2)
we get the Reshetikhin-Turaev operator invariant of ∂S-tangles, see [Tu3]. Let us describe
this operator invariant in a special case. Let V be the free R-module with basis g+, g−.
The above mentioned operator invariant is the unique functor Z from the non-directed
ribbon tangle category to the category of R-modules preserving the tensor product such
that Z(n) = V ⊗n and the values of the elementary tangles are given by

Z
( )

: V ⊗2 → R, g+ ⊗ g− → q−
1
2 , g− ⊗ g+ → −q−

5
2 , g+ ⊗ g+ → 0, g− ⊗ g− → 0

(110)

Z
( )

: R→ V ⊗2, 1→ −q
5
2 (g+ ⊗ g−) + q

1
2 (g− ⊗ g+)

(111)

Z
( )

: V ⊗2 → V ⊗2, Z
( )

= q id + q−1
(
Z
( )

◦ Z
( ))

,

(112)

Z
( )

: V ⊗2 → V ⊗2, Z
( )

= q−1 id + q
(
Z
( )

◦ Z
( ))

,

(113)

see [Co]. Here our g± are related to the basis vectors g 1
2
in [Co] by

g+ = −
√
−1 q−3/2g 1

2
, g− = g− 1

2
.

Thus if β is a ∂S-tangle with |∂lβ| = l and |∂rβ| = k then Z(β) is an R-linear map
V ⊗k → V ⊗l which depends only on the isotopy class of β.
For ~ν = (ν1, . . . , νl) ∈ {±}l and ~µ = (µ1, . . . , µk) ∈ {±}k we can de�ne the matrix entry

~νZ(β)~µ ∈ R such that

(114) Z(β)(gµ1 ⊗ . . .⊗ gµk) =
∑

~ν∈{±}l
(~νZ(β)~µ) gν1 ⊗ . . .⊗ gνl .
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Remark 5.1. In fact V and all its tensor powers are modules over the quantum group
Uq2(sl2), and all the operators Z(β) are Uq2(sl2)-morphisms. But we don't need the structure
of Uq2(sl2)-modules here. When k = l = 0, we have Z(β) ∈ R, which is equal to the Kau�man
bracket polynomial of β.

5.2. From ∂M-tangles to ∂S-tangles. Suppose γ is a ∂M -tangle. We can ∂M -isotope γ
so that its diagram D has the height order on el and er determined by the arrows in Figure
24. This diagram determines a unique class of ∂S-tangle, denoted by γ̄. Note that the arrows
of er, el are irrelevant for γ̄. It is easy to see that the map γ → γ̄ is a bijection from the set
of ∂M -isotopy classes of ∂M -tangles to the set of ∂S-isotopy classes of ∂S-tangles.

Figure 24. Direction of boundary edges, used to determine the height order

Suppose |γ ∩ el| = l and |γ ∩ er| = k, and ~ν = (ν1, . . . , νl) ∈ {±}l and ~µ = (µ1, . . . , µk) ∈
{±}k. Let ~νγ~µ be the stated ∂M -tangle whose underlying tangle is γ and whose states
on γ ∩ el (respectively on γ ∩ er) from top to bottom by the height order are ν1, . . . , νl
(respectively µ1, . . . , µk).

Theorem 5.2. Assume the above notation. Consider ~νγ~µ as an element of S (B). Then

(115) ε (~νγ~µ) = ~νZ(γ̄)~µ.

Thus we see that the tangle invariant of ~νγ~µ with values in S (B) is stronger than the
Reshetikhin-Turaev operator invariant.

Proof. Suppose γ1, γ2 are ∂M -tangles. Since γ1γ2 = γ̄1 ⊗ γ̄2, if (115) is true for γ = γ1 and
γ = γ2, it is true for γ = γ1γ2.
Now suppose γ1, γ2 are obtained by splitting a ∂M -tangle β along an ideal edge. By the

splitting formula (40) and the de�nition of ∆,

∆(~νβ~µ) =
∑
~η

~ν(γ1)~η ~η(γ2)~µ.

Applying ε⊗ id to the above, we get

~νβ~µ =
∑
~η

ε(~ν(γ1)~η) ~η(γ2)~µ.

Applying ε to the above, we get

ε(~νβ~µ) =
∑
~η

ε(~ν(γ1)~η) ε(~η(γ2)~µ),

which shows that if (115) holds for γ = γ1 and γ = γ2 then it holds for β = γ1 ◦ γ2.
Thus it is enough to check (115) for the elementary tangles, for which (115) follows from

the explicit formulas (110)�(113). �
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5.3. A 1 + 1-TQFT. Let Cob1,1 be the symmetric monoidal category whose:
Objects are numbered disjoint unions of open unoriented segments.
Morphisms are di�eomorphism classes of punctured bordered surfaces S with indexed
boundary. Explicitly if ∂S = eL1 , · · · , eLm, eR1 , · · · , eRn thenS ∈Mor(eL1 t· · ·teLm, eR1 t· · ·teRn )
and the composition of morphisms is given by the glueing of marked surfaces explained above
(associativity of compositions is ensured by the fact that we consider di�eomorphism classes
of surfaces). In particular the identity morphism of e1t· · ·ten is a disjoint union of n copies
of B.
Tensor product is the disjoint union, where the components of (e1t· · ·ten)t(e′1t· · ·te′m)
are ordered as e1 t · · · en t e′1 = en+1 t e′m = em+n.
In order to de�ne the target category of our TQFT functor, let us �x some notation.

Given a �nite set C, we will then denote by Uq2(sl2)⊗C the algebra obtained as the tensor
product

⊗
c∈C Uq2(sl2) where each copy of Uq2(sl2) in the tensor product is indexed by a

distinct element of C.

De�nition 3 (Uq2(sl2)−finBim). Let Uq2(sl2)−finBim be the category whose objects are
pairs (C, [M ]) where C is a �nite set, M is a right module over Uq2(sl2)⊗C which is a
direct sum of �nite dimensional modules and [M ] is its isomorphism class. A morphism
from (C, [M ]) to (C ′, [M ′]) in Uq2(sl2)−finBim is the isomorphism class of a bimodule B

over (Uq2(sl2)⊗C , Uq2(sl2)⊗C
′
) which is a direct sum of �nite dimensional bimodules and

such that [M ⊗Uq2 (sl2)⊗C B] = [M ′]. The composition of [B] : (C, [M ]) → (C ′, [M ′]) and

[B′] : (C ′, [M ′])→ (C ′′, [M ′′]) is [B⊗Uq2 (sl2)⊗C′ B′] (the composition is associative as we con-

sider bimodules up to isomorphisms). The monoidal structure on Uq2(sl2)−finBim is given
by (C, [M ]) ⊗ (C ′, [M ′]) := (C ∪ C ′, [M ⊗R M ′]) and its symmetry is given by exchanging
(C, [M ]) and (C ′, [M ′]).

Then let S : Cob1,1 → Uq2(sl2)−finBim be de�ned as

S (e1 t · · · t en) = (C = {e1, . . . en}, [Q(q1/2)⊗R S (B)⊗C ])

and for a punctured bordered surface S whose boundary is a union of C = {eL1 , . . . , eLn}
and C ′ = {eR1 , . . . , eRm} let S (S) be the isomorphism class of the (Uq2(sl2)⊗C , Uq2(sl2)⊗C

′
)-

bimodule Q(q1/2)⊗R S (S).

Theorem 5.3 (Skein algebra as a TQFT). The functor S is a symmetric monoidal functor
into Uq2(sl2)−finBim.

Proof. By point b) of Theorem 4.6 it holds Q(q1/2) ⊗R S (B) =
⊕

i≥0 V
L
i ⊗ V R

i where V L
i

(resp. V R
i ) is the irreducible i+ 1-dimensional left (resp. right) module over Uq2(sl2). Then,

arguing exactly as in the proof of Theorem 4.10 one sees that for each j ≥ 0 it holds

[V R
j ⊗Uq2 (sl2) (Q(q1/2)⊗R S (B))] = [V R

j ].

Then Q(q1/2) ⊗R S (B) represents the identity morphism ({e}, [M ]) → ({e}, [M ]) (for any
edge e) if restricted to �nite dimensional right Uq2(sl2)-modules (which are all direct sums
of V R

j 's). Let S′ and S′′ be two bordered punctured surfaces with boundaries indexed so

that ∂LS′ = {e1, . . . , en} = ∂RS′′ and let S be the surface obtained by glueing S′ and
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S′′ by identifying the corresponding edges of ∂LS′ and ∂RS′′ via an orientation reversing
di�eomorphism. Then S (S′) (resp. S (S′′)) is a right (resp. left) module over Uq2(sl2)∂

LS′

(resp. over Uq2(sl2)∂
RS′′=∂LS′). To conclude, a repeated application of Theorem 4.10 shows

that the following holds up to isomorphism:

S (S) = S (S′)⊗Uq2 (sl2)⊗∂LS′ S (S).

�

Remark 5.4. The previous construction can be improved by passing to the setting of 2-
categories in order to consider objects no longer up to isomorphisms. This requires to consider
marked surfaces and bimodules and will be dealt with in another work.

6. A non-symmetric modular operad

In this section we show that stated skein algebras provide an example of �non symmetric
geometric modular operad�. Such objects were de�ned by Markl ([Mark]) as a generali-
sation of �modular operads� initially de�ned by Geztler and Kapranov ([GK]). Given a
monoidal category C, Markl de�ned a NS modular operad in C as a monoidal functor
NSO : MultiCyc → C where MultiCyc is a suitable category of MultiCyc �multicyclic sets�.
In this section we rephrase Markl's de�nition in the case of a suitable category of punctured
bordered surfaces TopMultiCyc; then we de�ne a NS geometric modular operad as a monoidal
functor NSO : TopMultiCyc → C. Finally we re-interpret skein algebras as an example of
an NS geometric modular operad with values in Uq2(sl2)−finBim (see De�nition 3).

6.1. The category of topological multicyclic sets TopMultiCyc. In this section all sur-
faces will be oriented and all homeomorphisms will preserve the orientation.
A cutting system in a bordered punctured surface S is a �nite linearly ordered set α of

pairwise disjoint ideal oriented arcs α1, · · · , αk ⊂ S (see Subsection 2.2); a homeomorphism
of cutting systems α and β in S is a homeomorphism φ : S → S such that φ(α) = β so
that it preserves the ordering and the orientations of the arcs. Cutting along all the arcs of
a cutting system α produces a bordered punctured surface cutα(S) whose homeomorphism
class depends only on the homeomorphism class of α. We will say that a cutting system α
is disconnecting if each arc in α disconnects S.
If the connected components of S are linearly ordered then one can order the connected

components of cutα(S) as follows. Since cutα(S) = cutαk

(
cutαk−1

(· · · cutα1(S))
)
, it is su�-

cient to de�ne how to do it for of the cut along a single ideal arc α. If α does not disconnect,
then there is a natural bijection between the components of S and cutα(S) which induces
the ordering on those of the latter surface. If α disconnects S, since both α and S are
oriented there is a well de�ned notion of the connected component of cutα(S) �lying at the
left� and �at the right of α� we then order them so that left precedes right and they are
in the same position in the global ordering of the components of S as the component they
come from.

De�nition 4 (TopMultiCyc,TopForest). Let TopMultiCyc be the category whose objects are
homeomorphism classes of punctured bordered surface whose connected components are lin-
early ordered, and where a morphism S′ → S is a homeomorphism class of a cutting system
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α in S such that cutα(S) is homeomorphic to S′. The category TopForest is the subcategory
whose objects are disjoint unions of polygons (see Example 4.19) and whose morphisms are
those represented by disconnecting cutting systems.

If φ : S′ → cutα(S) and ψ : S → cutβ(S′′) are homeomorphisms, then the composition
of the morphisms associated to α and β is the homeomorphism class of ψ(α) t β ⊂ S′′

where the numbering of the arcs of ψ(α) is lower than those of β. The identity morphism is
represented by the class of the empty cutting system and it is straightforward to check that
the composition is associative, so that the above are indeed categories.
Both TopMultiCyc and TopForest are symmetric monoidal categories. Indeed the tensor

product of S′ = S′1 t · · · tS′k and S = S1 t · · · tSh (where S′i,Sj are connected for all
i, j and the linear order of the components is increasing from left to right) is de�ned as

S′ ⊗S := S′1 t · · ·S′k tS1 t · · · tSh.

On the level of morphisms, if α ⊂ S1 and β ⊂ S2 are two cutting systems then α⊗β = αtβ
where the linear order of the arcs of α is lower than that of the arcs in β. The symmetry is
given by exchanging the components, so with the above notations s(S′ ⊗S) = S⊗S′ and
s(α⊗ β) = β ⊗ α.
The following de�nition is a reformulation of Markl's [Mark] (De�nition 4.1) in the context

of punctured bordered surfaces:

De�nition 5 (NS Modular Operads). Let C be a symmetric monoidal category. A NS (non
symmetric) geometric modular operad in C is a symmetric monoidal functor

O : TopMultiCyc→ C.

A NS cyclic operad in C is a symmetric monoidal functor O : TopForest→ C.

6.2. NS geometric modular operads from skein algebras. Recall that if B is the
bigon with one edge of type �left� and one of type �right�, then S (B) = Oq2(SL(2)) as a
(Uq2(sl2), Uq2(sl2))-bimodule. Let also BR be the bigon whose edges are declared to be both
of type R (right edges) then S (BR) is the left module over Uq2(sl2)⊗2 whose underlying space
is Oq2(SL(2)) and on which the action of x⊗ y ∈ Uq2(sl2)⊗2 is given by x⊗ y · b = x · b · r∗(y)
(see Example 4.7).

Theorem 6.1 (Skein algebras as non symmetric operads). There is a geometric NS-modular
operad NSO in Uq2(sl2)−finBim de�ned on an object S of TopMultiCyc as

NSO(S) = (Edges(S), [Q(q1/2)⊗R S (S)])

where S is the surface whose edges are all indexed to be of type L (left) and where we see
Q(q1/2)⊗R S (S) as a right module over Uq2(sl2)⊗Edges(S) as explained in Subsection 4.3.
If φ : S′ → S is a morphism associated to a cutting system α, then let

NSO(φ) = [Q(q1/2)⊗S (B)⊗Edges(S) ⊗S (BR)⊗α]

where S (BR)⊗α is the skein algebra of a disjoint union of one copy of Br per arc αi ∈ α
whose boundary edges correspond to the edges of ∂S′ lying respectively at the left and at the
right of αi.
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Proof. First of all observe that the functor is well de�ned as all surfaces are seen up to
orientation preserving di�eomorphism and all modules and bimodules in Uq2(sl2)−finBim
are seen up to isomorphism. Then we observe that the skein algebra of a disjoint union of n
bigons

Q(q1/2)⊗R S (tnj=1Bj) = Q(q1/2)⊗R S (B)⊗n = Q(q1/2)⊗R Oq2(SL(2))⊗n

is the identity of ({1, 2, · · · , n}, [M ]) (where i is the left edge of the ith-bigon) for any right
module M which is a direct sum of �nite dimensional modules over Uq2(sl2)⊗n. Indeed M
is a direct sum of modules of the form W ⊗ V R

j where V R
j is the j + 1-dimensional irrep of

Uq2(sl2) and W is a right module over Uq2(sl2)⊗n−1 which is itself a tensor product of �nite
dimensional modules. As proved in Theorem 4.6 S (B) = Oq2(SL(2)) =

⊕
i V

L
i ⊗ V R

i so
that by the same arguments as in the proof of Theorem 4.10 it holds:

[W ⊗ V R
j ⊗Uq2 (sl2)n

(⊕
i

V L
i ⊗ V R

i

)
] =

⊕
i

[W ⊗
(
V R
j ⊗Uq2 (sl2) V

L
i

)
⊗ V R

i ] = [W ⊗ V R
j ].

This shows that tensoring over Uq2(sl2) with a single copy of Q(q1/2)⊗RS (B) provides the
identity morphism; by Remark 4.13 repeating this along all the boundary edges one gets
that tensoring with Q(q1/2) ⊗R Oq2(SL(2))⊗n is the identity of ({1, 2, · · · , n}, [M ]) for any
M decomposing into a direct sum of �nite dimensional modules.
Now we prove that if i, j are two distinct boundary edges of a (possibly disconnected)

surface S′, then

(116) [S (S′)⊗Uq2 (sl2){i,j} S (BR)] = [S (S)]

where S (BR) is seen as left module over Uq2(sl2){i,j} and S is the surface obtained by
glueing the edges i, j by an orientation reversing homeomorphism. Indeed by Remark 4.13
and Example 4.12 to glue BR along i and j, one can �rst glue S′ and BR along i thus
obtaining the surface S′ whose edge i has been changed to type R (see Example 4.12) and
then operating a self-glueing along i and j on this surface. By Theorem 4.10 the overall
result is Q(q1/2) ⊗R S (S). Then if α is a cutting system given by c arcs, by Remark 4.13
applying c times (116) we get that tensoring with Q(q1/2) ⊗R S (BR)⊗α is performing the
glueing inverting the cut associated to the cutting system α.

�

7. Reduced skein algebra

We show that the stated skein algebra S (S) has a nice quotient S (S), called the reduced
stated skein algebra, which can be embedded in a quantum torus. This quotient is still big
enough to contain the ordinary skein algebra and the Muller skein algebra. Unlike the case
of the full �edged version S (S), when S is an ideal triangle, the reduced version S (S) is
a quantum torus. The construction of the quantum trace map follows immediately from the
splitting theorem for the reduced stated skein algebra.
Throughout we �x a punctured bordered surfaceS = S\P and we will denote S = S (S).
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7.1. De�nition. A non-trivial arc α ⊂ S, which is the closed interval [0, 1] properly em-
bedded in S not homotopic relative its endpoints to a subset of the boundary ∂S, is called
a corner arc if it is as that depicted in Figure 25(a), i.e. it cuts o� from S a triangle with
one ideal vertex. Such an ideal vertex is said to be surrounded by the corner arc α.
A bad arc is a stated corner arc whose states are as in the �gure Figure 25, i.e. they are
− followed by + if we go along the arc counterclockwise around a surrounded vertex. The

Figure 25. (a) a bad arc (b) the splitting of a bad arc

reduced stated skein algebra S (S) is de�ned to be the quotient of S (S) by the 2-sided
ideal Ibad generated by bad arcs.

7.2. Basis. Let o+ be the orientation of ∂S induced by that of S, i.e. every boundary edge
has positive orientation. Then B := B(S; o+) is an R-basis of S (S). Let B = B(S) ⊂ B
be the subset consisting of all elements in B which contain no bad arc.

Theorem 7.1. The set B is a free R-basis of the R-module S (S).

Proof. Let A ⊂ S be the R-span of B and A′ ⊂ S be the R-span of B \ B. One has
S = A⊕ A′. Let us prove that the ideal Ibad is equal to A′.
Proof that A′ ⊂ Ibad. Let γ ∈ (B \ B), i.e. γ contains a bad arc. We have to show that

γ ∈ Ibad. If an arc in γ (at some corner) is bad, then the positive orientation and increasing
states imply that all the arcs closer to the vertex of that corner are bad, see Figure 26.

Figure 26. If the outer arc is bad, then all inner arcs are bad, too.

Thus we assume that γ has a bad arc which is an inner most arc, see Figure 27(b).
We have the relations in Figure 28, which are part of Lemma 2.4. The �rst relation

allows us to move the end of the red arc with state − (in γ) up until we get the diagram

in Figure 27(a), which is of the form αβ, where α is a bad arc. The result is that γ
•
= αβ.

Thus, γ ∈ Ibad.
Proof that Ibad ⊂ A′. We have to show that αβ, βα ∈ A′ for any bad arc α and any

β ∈ B.
The product αβ: In this case, αβ is presented as in Figure 27(a). We already saw that

αβ
•
= γ, where γ is as in Figure 27(b). Since γ ∈ A′, we see that αβ ∈ A′.
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Figure 27. (a) The product αβ, here α (in red) is a bad arc, (b) an element
γ ∈ B which has a bad innermost arc (in red).

Figure 28. Moving endpoint with negative state (left) and positive state (right)

Figure 29. (a) Product βα, where α is a bad arc (in red), (b) the diagram γ

The product βα: In this case, βα is presented as in Figure 29(a). Using the 2nd relation

in Figure 28, we get that βα
•
= γ, where γ is as in Figure 29(b). Since γ ∈ A′, we see that

αβ ∈ A′.
Thus, Ibad = A′. Hence as R-modules, S (S) = S /J ∼= A, which has B as an R-

basis. �

Remark 7.2. Positive order is used substantially in the proof. For other orientation of ∂S,
the set similar to B̄ might not be the basis of S (S).

Corollary 7.3. The ordinary skein algebra S̊ (S) and the Muller skein algebra S +(S)
embed naturally into the reduced skein algebra S (S).

Proof. Clearly the standard basis of the ordinary skein algebra and the standard basis of the
Muller skein algebra (where all the states are +) are subsets of the basis B̄ of S (S). �

7.3. Corner elements.

Proposition 7.4. Let u be a stated corner arc with both states positive and v be the same
arc with both states negative. Then uv = vu = 1 in S (S).
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Proof. In S (S) we have

vu = = q2 + q−1/2 = q−1/2 = 1,

where the second identity follows from (10) and the last follows from (14). Similarly,

uv = = q−2 − q−5/2 = q−5/2 = 1,

where the second identity follows from (10) and the last follows from (14). �

7.4. Filtration. For a �nite collection A of ideal arcs or simple closed loops let FA
n (S (S)) be

theR-submodule of S (S) spanned by stated tangle diagrams α such that
∑

a∈A I(a, α) ≤ n.

Then (FA
n (S (S)))∞n=0 is a �ltration of S (S) compatible with the algebra structure. Denote

by GrA(S (S)) the associated graded algebra:

GrA(S (S)) =
∞⊕
n=0

GrAn(S (S)), where GrAn(S (S)) = FA
n (S (S))/FA

n−1(S (S)).

From Theorem 7.1 we have the following analog of Proposition 2.12.

Proposition 7.5. Suppose A is a collection of boundary edges of S.
(a) The set {α ∈ B̄ |

∑
a∈A I(α, a) ≤ n} is an R-basis of FA

n (S (S)).

(b) The set {α ∈ B̄ |
∑

a∈A I(α, a) = n} is an R-basis of GrAn(S (S)).

7.5. Splitting theorem.

Theorem 7.6. Suppose S′ is the result of splitting S along an interior ideal arc a. The
splitting algebra embedding θa : S (S) ↪→ S (S′) descends to an algebra embedding

(117) θ̄a : S (S)→ S (S′).

Besides, if a and b are two disjoint ideal arcs in the interior of S, then

(118) θ̄a ◦ θ̄b = θ̄b ◦ θ̄a

Proof. Suppose α ⊂ S is a bad arc. The geometric intersection I(α, a) is 0 or 1. In the
�rst case θa(α) = α is also a bad arc in S′. In the second case the splitting of α, given in
Figure 25(b), has a bad arc for both values of ν ∈ {±}. It follows that θa(Ibad) ⊂ Ibad.
Hence θa descends to an algebra homomorphism θ̄a : S (S)→ S (S′) and we also have (118).
It remains to show that θ̄a is injective. Let 0 6= x ∈ S (S). We have to show that

θ̄a(x) 6= 0. Since B̄(S) is an R-basis, there is a non-empty �nite set S ⊂ B̄(S) such that

(119) x =
∑
α∈S

cαα, 0 6= cα ∈ R.

Let k = maxα∈S I(α, a). Then S ′ := {α ∈ S | I(α, a) = k} is non-empty.
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Let pr : S′ → S be the projection and a′, a′′ ⊂ S′ be the boundary edges which are
pr−1(a). To simplify the notations we write FA

n and GrAn for respectively FA
n (S (S′)) and

GrAn(S (S′)). From the formula of the splitting homomorphism, for every α ∈ S,

θ̄a(α) ∈ F a′

k ∩ F a′′

k ⊂ F
{a′,a′′}
2k .

Let P : F
{a′,a′′}
2k � Gr

{a′,a′′}
2k be the canonical projection. Clearly if α ∈ S \S ′ then P (α) = 0.

We consider Case 1 and Case 2 below.
Case 1: There exists β ∈ S such that P (θ̄a(β)) 6= 0.

Figure 30. The split surface S′, with orientations o′ on ∂S′. The top left,
top right, bottom left, and bottom right corners are marked respectively
TL, TR,BL,BR.

Choose an orientation of a such that the induced orientation on a′′ is positive. Then the
induced orientation on a′ is negative, see Figure 30. Let o′ be the orientation of ∂S′ which is
positive everywhere except for the edge a′ where it is negative. For α ∈ S ′ its lift α̃ = pr−1(α)
is a partially stated tangle diagram: it is stated everywhere except for endpoints on a′ ∩ a′′,
and the endpoints on each of a′ and a′′ are ordered by o′. Let α̃+ be the same α̃ except that
the order on a′ (and hence on all edges) is given by the positive orientation.
For 0 ≤ j ≤ k let sj(α̃) (respectively sj(α̃

+)) be the stated tangle diagram which is α̃
(respectively α̃+) where the states on each of a′ and a′′ are increasing and having exactly j
minus signs. Then sj(α̃

+) is either equal to 0 in S (S′) or belongs to the basis set B̄(S′).
By Proposition 2.17 and then Proposition 2.14 we have, for some f(α, j) ∈ Z,

(120) P (θ̄a(α)) =
k∑
j=0

(
k

j

)
q4
sj(α̃) =

k∑
j=0

(
k

j

)
q4
qf(α,j)sj(α̃

+).

Since P (θ̄a(β)) 6= 0, there is l such that sl(β̃
+) 6= 0 in S (S′) and hence sl(β̃

+) ∈ B̄(S′).
Using (120) we have

(121) P (θ̄a((x)) =
∑
α∈S′

k∑
j=0

(
k

j

)
q4
qf(α,j) cα sj(α̃

+).

As α ∈ S ′ can be recovered from α̃, if α 6= β then the two partially stated diagrams α̃
and β̃ are not isotopic. It follows that sl(β̃

+) 6= sj(α̃
+) for all j and all α 6= β. It is also

clear that sj(θ̃
+) 6= sl(θ̃

+) for j 6= l. Hence the right hand side of (121) is not 0, since the

basis element sl(β̃
+) has non-zero coe�cient, and all other elements sj(α̃

+) is either 0 or a

basis element di�erent from sl(β̃
+). Thus P (θ̄a((x)) 6= 0 and consequently θ̄a(x) 6= 0. This

completes the proof in Case 1.
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Case 2: For all α ∈ S we have P (θ̄a(α)) = 0. Identity (120) shows that sj(α̃
+) = 0 for all

0 ≤ j ≤ k and all α ∈ S ′.
Incident with a′ there are two corners, the top left corner and the bottom left corner.

Similarly, incident with a′′ there are the top right corner and the bottom right corner, see
Figure 30. A corner arc of α̃ at one of these four corners has one end stated and one end
not stated, and it is called a negative (respectively positive) corner arc if this only state is
negative (respectively positive).
For α ∈ S ′ and ν ∈ {±} let TLν(α) be the number of top left corner arcs whose only state

is ν. De�ne TR±(α),BL±(α),BR± (α) similarly.

Lemma 7.7. Suppose α ∈ S ′. One of the following two mutually exclusive cases happens:
(i) TL−(α) > 0 and BL+(α) > 0, or
(ii) BR−(α) > 0 and BR+(α) > 0.

Proof. Since s0(α̃+) is 0 in S (S′), it has a bad arc. This implies either TL−(α) > 0 or
BR−(α) > 0.
Assume TL−(α) > 0. Since α does not have a bad arc, we conclude that TR+(α) = 0.

Then from sk(α̃
+) = 0 we see that BR+(α) > 0. Again since α does not have a bad arc, we

conclude that BR−(α) = 0. Thus we have case (i) but not case (ii).
Assume BR−(α) > 0. Since α does not have a bad arc, we conclude that BL+(α) = 0.

Then from s0(α̃+) = 0 we see that TR+(α) > 0. Again since α does not have a bad arc, we
conclude that BL−(α) = 0. Thus we have case (ii) but not case (i). �

The cases (i) and (ii) of Lemma 7.7 partition S ′ = S ′L t S ′R, where

S ′L = {α ∈ S ′ | TL−(α) BL+(α) > 0}, S ′R = {α ∈ S ′ | BR−(α) BR+(α) > 0}.

Lemma 7.8. If α ∈ S ′L then θ̄a(α) = 0 in Gra
′

k . Similarly, if α ∈ S ′R then θ̄a(α) = 0 in Gra
′′

k .

Proof. Suppose α ∈ S ′L. For ~ν = (ν1, . . . , νk) the stated tangle diagram (α̃, ~ν) is de�ned to
be α̃ with states on both a′ and a′′ are sequence ~ν listed from top to bottom. By de�nition,

(122) θ̄a(α) =
∑

~ν∈{±}k
(α̃, ~ν).

Let (α̃+, ~ν)L be α̃+ whose states on a′′ is given by ~ν but whose state on a′ is given by a
permutation of ~ν such that the states are increasing on a′. By Proposition 2.14

(123) (α̃, ~ν)
•
= (α̃+, ~ν)L in Gra

′

k .

If ~ν has at least one negative sign then (α̃+, ~ν)L has a bad arc in the bottom left corner
(because BL+(α) > 0) and hence is equal to 0 in S (S′). If ~ν has at least one positive sign
then (α̃+, ~ν)L has a bad arc in the top left corner (because TL−(α) > 0) and hence is equal
to 0 in S (S′). Thus we always have (α̃+, ~ν)L = 0 in S (S′). From (123) and (122) we

conclude that θ̄a(α) = 0 in Gra
′

k .
The other case follows from the above case by noticing that if one rotates the Figure 30

by 180◦, then the top left corner becomes the bottom right corner. �
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As ∅ 6= S ′ = S ′L t S ′R, one of S ′L and S ′R is non-empty. Without loss of generality we can
assume that S ′L is not empty.
Let d = min{TL−(α) | α ∈ S ′L} and S ′′ = {α ∈ S ′L | TL−(α) = d}. Then S ′′ 6= ∅.
Let P+ : S (S′)→ S (S′) be the R-linear map de�ned on basis elements γ ∈ B̄(S′) by

P+(γ) =

{
γ if I(γ, a′) = d, I(γ, a′′) = k, all states on a′ are +

0 otherwise.

For α ∈ S ′′ let ˜̃α be the stated tangle diagram obtained from α̃+ by �rst removing the d
negative top left corner arcs then providing states on a′ and a′′ so that all states on a′ are +
and the states on a′′ are increasing and having exactly d negative signs. Since BR−(α) = 0,
we see that ˜̃α is an element of the basis B̄(S′). As α can be recovered from ˜̃α, the map
α→ ˜̃α from S ′′ to B̄(S′) is injective.
Let u be a top left corner arc whose both states are +.

Lemma 7.9. For α ∈ S one has

(124) P+(θ̄a(α)ud) =

{
q−(k−d)(k−d−1)/2 ˜̃α if α ∈ S ′′

0 if α 6∈ S ′′.

Proof. One has S = (S ′R t S ′L) t (S \ S ′). If α ∈ (S \ S ′) then I(α, a) < k and hence
P+(θ̄a(α)) = 0.

If α ∈ S ′R then by Lemma 7.8 one has θ̄a(α) = 0 in Gra
′′

k which means θ̄a(α) is a linear
combination of elements γ ∈ B̄ with I(γ, a′′) < k. It follows that P+(θ̄a(α)) = 0.
It remains to consider the case α ∈ S ′L = S ′′ t (S ′L \ S ′′). From (122),

(125) P+(θa(α)ud) =
∑

~ν∈{±}k
P+((α̃, ~ν)ud).

Recall that for β ∈ B̄(S′) one de�nes δa′(β) as the sum of all the states of β ∩ a′. From the
de�nition, if δa′(β) 6= k − d then P+(β) = 0. If ~ν has m negative signs where m > d then

δa′((α̃, ~ν)ud) = k − 2m+ d < k − d,
and hence P+((α̃, ~ν)ud) = 0. Thus we can assume that in the sum in (125), the number of
negative signs in ~ν is ≤ d.
Assume that TL−(α) = m. Note that the m negative top left corner arcs of α̃ are below

any other components of α̃. Hence the number of the �rst m components of ~ν must be
negative since otherwise one of the m top left corner arcs is bad and (α̃, ~ν) = 0 in S (S′).
We conclude that if TL−(α) > d (that is, if α ∈ S ′L \ S ′′), then
(126) P+(θa(α)ud) = 0.

Moreover, if TL−(α) = d (that is, α ∈ S ′′), then
(127) P+(θa(α)ud) = P+((α̃, ~νd)u

d),

where ~νd ∈ {±}k is the sequence whose �rst d components are − and all other components
are +. The d negative top left corner arcs of (α̃, ~νd) are all v, the corner edge with negative
states on both ends. Hence we have (α̃, ~ν) = ˜̃α′vd, where ˜̃α′ is the same as ˜̃α except that
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the order on a′ is negative. Using the height exchange move between positive states, see
Equation (15), and relation vu = 1 we get that

P+((α̃, ~νd)u
d) = q−(k−d)(k−d−1)/2 ˜̃α,

which proves (124) and completes the proof of the lemma. �

Let us continue the proof of the theorem for Case 2. From Lemma 7.9 we have

P+(θ̄a(x)ud) =
∑
α∈S′′

cαq
−(k−d)(k−d−1)/2 ˜̃α,

which is non-zero since { ˜̃α} are distinct elements of the basis B̄(S′). The theorem is proved.
�

7.6. The bigon. The elements αµν ∈ S (B) are de�ned in Section 3.

Proposition 7.10. Let B be the bigon. There is an algebra isomorphism S (B) ∼= R[x±1]
given by α++ → x, α−− → x−1, α+− → 0, α−+ → 0.

Proof. A presentation of the algebra S (B) ∼= Oq2(SL(2)) is given by Theorem 3.4, with
generators a = α++, b = α−−, c = α−+, d = α−− and relations (54) and (55). The only bad
arcs in B are α−+ = c and α+− = b. Thus S (B) = S (B)/Ibad has a presentation like that
of Oq2(SL(2)), with additional relations b = c = 0. From the quantum determinant relation

in (55) we get ad = 1 in S (B).
On the other hand it is easy to check that the relations b = c = 0 and ad = 1 imply all

other relations in (54) and (55). Hence

S (B) ∼= R〈a, b, c, d〉/(ad = 1, b = c = 0) ∼= R[a±1].

�

7.7. The triangle. Let P3 be the ideal triangle, with boundary edges a, b, c as in Figure 31.
Let α, β, γ be the corner arcs which are opposite respectively to a, b and c. For µ, ν ∈ {±}
and ξ ∈ {α, β, γ} let ξ(µν) be the arc ξ with states µ and ν on the end points such that ν
follows µ along ξ counter-clockwise (with respect to the vertex surrounded by ξ).

Figure 31. Edges a, b, c opposite to corner arcs α, β, γ

For an anti-symmetric n × n matrix A = (aij)
n
i,j=1 the quantum torus associated to A is

the algebra with presentation

R〈x±1
i , i = 1, . . . n〉/(xixj = qaijxjxi).

For basic properties of quantum tori see for example [Le1, Section 2].



STATED SKEIN ALGEBRAS OF SURFACES 61

To the triangle P3 we associate the quantum torus T with presentation

T := R〈α±1, β±1, γ±1〉/(qαβ = βα, qβγ = γβ, qγα = γα).

The cyclic group Z/3 = 〈τ | τ 3 = 1〉 acts by algebra automorphisms on each of the algebras
S (P3), S (P3), and T as follows. In short τ is rotation τ by 2π/3 counterclockwise about
the center of the triangle. This rotation induces the algebra automorphism τ of S (P3); it
also induces the algebra automorphism τ of S (P3). On T and τ is given by

τ(α) = β, τ(β) = γ, τ(γ) = α.

Theorem 7.11. The reduced skein algebra S (P3) of the ideal triangle is isomorphic to the
quantum torus T. The isomorphism is Z/3-equivariant and given by

(128) α(++)→ α, α(+−)→ q−
1
2γβ, α(−+)→ 0, α(−−)→ α−1.

Proof. By [Le2, Theorem 4.6] the algebra S (P3) is generated by

X = {α(ν, ν ′), β(ν, ν ′), γ(ν, ν ′) | ν, ν ′ ∈ {±}}

subject to the following relations and their images under τ and τ 2:

β(µ, ν)α(µ′, ν ′) = qα(ν, ν ′) β(µ, µ′)− q2Cν
µ′ γ(ν ′, µ)(129)

α(−, ν)α(+, ν ′) = q2α(+, ν)α(−, ν ′)− q5/2Cν
ν′(130)

α(ν,−)α(ν ′,+) = q2α(ν,+)α(ν ′,−)− q5/2Cν
ν′(131)

α(−, ν) β(ν ′,+) = q2α(+, ν) β(ν ′,−)− q5/2γ(ν, ν ′)(132)

α(ν,−) γ(+, ν ′) = q2α(ν,+) γ(−, ν ′) + q−1/2β(ν ′, ν).(133)

As the only bad arcs are α(−,+), β(−,+), γ(−,+), the quotient S (P3) is obtained by adding
the relations α(−,+) = β(−,+) = γ(−,+) = 0, and from this presentation one can check
that the map given by (128) and its images under the action of Z/3 is an isomorphism.
Here is an alternative, more geometric proof. First in S (P3) we have

(134) α(++)α(−−) = 1, β(++)α(++) = q α(++) β(++),

and all its images under Z/3. In fact the �rst identity follows from Proposition 7.4 and the
second follows from the height exchange identity (15). It follows that the Z/3-equivariant
map f : T→ S (P3) given by

f(α) = α(++), f(α−1) = α(−−), and images under Z/3,

gives a well-de�ned algebra homomorphism, as all the de�ning relations of T are preserved
under f . In S (P3) we have

(135) γ(+−) = q−1/2 β(++) γ(−−),

which follows from the identity in Figure 17 (where the left hand arc is stated to become
α(+−)). Thus all elements in the generator set X are in the image of f . This shows that f
is surjective.
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Let us show f is injective. The set {αkβmγn | k,m, n,∈ Z} is an R-basis of T. Assume
that there is a �nite set S ⊂ Z3 such that

(136) f

 ∑
(k,m,n)∈S

ck,m,nα
kβmγn

 = 0, ck,m,n ∈ R.

Multiplying the identity (136) on the left by f(αk
′
βm

′
γn
′
) with large k′,m′, n′ and using

the q-commutations between α, β, γ we can assume that k,m, n > 0 in (136). For each
(k,m, n) ∈ N3 let z(k,m, n) be the stated simple tangle diagram consisting of k arcs parallel
to α, m arcs parallel to β, and n arcs parallel to γ, with all state positive. Note that
z(k,m, n) ∈ B̄(P3). Clearly the map z : N3 → B̄(P3) is injective. As the diagram of
f(αkβmγn) can be obtained from z(k,m, n) by a sequence of height change moves of positively
stated endpoints, the �rst identity of (15) shows that

f(αkβmγn) = qg(k,m,n) z(k,m, n)

for some g(k,m, n) ∈ Z. From (121) we get∑
(k,m,n)∈S

ck,m,nq
g(k,m,n) z(k,m, n) = 0.

As z(k,m, n) are distinct elements of the basis B̄(P3), this forces all ck,m,n = 0. Hence f is
injective.

�

7.8. The quantum trace map. Assume that S is triangulable, i.e. S is not one of the
following: a monogon, a bigon, a sphere with one or two punctures. A triangulation E of
S is a collection consisting of all boundary edges and several ideal arcs in the interior of S
such that
(i) no two arcs in E intersect and no two are isotopic, and
(ii) if a is an ideal arc not intersecting any ideal arc in E then a is isotopic to one in E .
It is known that if S is triangulable, then by splitting S along all interior ideal arcs in
E we get a collection F(E) of ideal triangles. By the splitting theorem, we get an algebra
embedding of S (S) into a quantum torus

Θ : S (S)→
⊗
F(E)

T.

In addition to the quantum torus T we associate the quantum torus T′ to the standard
ideal triangle P3:

T′ := R〈a±1, b±1, c±1〉/(qab = ba, qbc = cb, qca = ac).(137)

One should think of a, b, c as the edges opposite to α, β, γ, see Figure 31.
The cyclic group Z/3 = 〈τ | τ 3 = 1〉 acts by algebra automorphisms on T′ by

τ(a) = b, τ(b) = c, τ(c) = a.

There is a Z/3-equivariant algebra embedding T ↪→ T′, de�ned by

α→ q1/2bc, β ↪→ q1/2ca, γ → q1/2ab.
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Consider the composition trq given by

trq : S (S)
Θ
↪→
⊗
F(E)

T ↪→
⊗
F(E)

T′.

On the collection of all edges of all the triangles in F(E) de�ne the equivalence relation
such that a′ ∼= a′′ if a′ and a′′ are glued together in the triangulation. Then the set of
equivalence classes is canonically isomorphic to E . Let Y(E) be the subalgebra of

⊗
F(E) T′

generated by all a′⊗a′′ with a ∼= a′ and all boundary edges (each boundary edge is equivalent
only to itself). It is easy to see that the image of trq is in Y(E). Thus, trq restricts to

trq : S (S)→ Y(E).

The algebra Y(E) is a quantum torus, known as the Chekhov-Fock algebra associated to a
triangulation E of S, see [BW, CF1, Le2]. The quantum trace map of Bonahon and Wong is

an algebra homomorphism t̂rq : Ŝ (S)→ Y(E), where Ŝ (S) is the coarser version of S (S)
de�ned using only (7) and (8), see Subsection 2.5.

Theorem 7.12. If E is a triangulation of S then the algebra embedding trq : S (S) ↪→ Y(E)

is a re�nement of the the quantum trace map of Bonahon and Wong in the sense that t̂rq is

the composition Ŝ (S) � S (S)
trq
↪→ Y .

Proof. In [Le2] an algebra homomorphism κE : S (S)→ Y(E) is de�ned as the composition

S (S) ↪→
⊗
F(E)

S (P3) ↪→
⊗
F(E)

T′,

where the map from S (P3) to T′ is exactly the composition S (P3) → S (P3) → T′. It

follows that κE is the composition S (S) � S (S)
trq
↪→ Y . In [Le2] it is proved that t̂rq is the

composition Ŝ (S) � S (S)
κE→ Y . Hence t̂rq is also the composition Ŝ (S) � S (S)

trq
↪→

Y . �

Besides giving another proof of the existence of the quantum trace map, Theorem 7.12
shows that the kernel of t̂rq is the ideal generated by relations (9), (10), and the ideal Ibad.

7.9. Co/module structure for S (S). The Hopf algebra structure of S (B) descends to
a Hopf algebra of S (B). We identify S (B) ≡ R[x±1] using the isomorphism of Proposition
7.10. Then ∆(x) = x⊗ x and ε(x) = 1.
Arguing exactly as in Subsection 4.1, one sees that for each surface S and each edge e of

S, the algebra S (S) has both a left and a right R[x±1]-comodule algebra structure (which
is equivalent to a Z-valued grading counting the number of + and − states of each skein
along e):

Proposition 7.13. (a) The map ∆e : S (S)→ S (S)⊗S (B) gives S (S) a right comodule-
algebra structure over the Hopf algebraR[x±1]. Similarly e∆ gives gives S (S) a left comodule-
algebra structure over the Hopf algebra R[x±1].
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(b) If e1, e2 are two distinct boundary edges, the coactions on the two edges commute, i.e.
for instance

(∆e2 ⊗ id) ◦∆e1 = (∆e1 ⊗ id) ◦∆e2 .

In the reduced setting, though, Theorem 4.8 does no longer hold: indeed, with the notation
in there, if β ∈ B(S) is a basis element intersecting a cutting edge exactly once, then its
image θ(β) under the cutting morphism is θ(β) = β′++ + β′−− where β′++, β

′
−− ∈ B(S′) are

identical except for their states on β′ ∩ (c1 ∪ c2). But it is not di�cult to check that β′++ is
balanced:

∆c1(β
′
++) = β′++ ⊗ α++ + β′+− ⊗ α−+ = β′++ ⊗ α++ = c2∆(β′++)

because the class of α−+ = α+− = 0 ∈ S (B), still β′++ is not in the image of θ.

8. The classical case: twisted bundles

In this section we will suppose that S is a connected, oriented surface with a non-empty
set of boundary edges and let o be the positive orientation of ∂S i.e. that induced by the
orientation of S. We will prove that if q

1
2 = 1 then S (S) is isomorphic to the algebra of

regular functions on the a�ne variety of �twisted bundles� on S. A similar result for the
case when ∂S = ∅ is well known (see for instance [Thu]).
Fix an arbitrary Riemannian metric and let US be the unit tangent bundle over S, with

the canonical projection π : US → S. A point in US is a pair (p, v), where p ∈ S, v ∈
TpS, ‖v‖ = 1. For each immersion α : [0, 1] → S its canonical lift is the path (α(t), α̇(t)

‖α̇(t))‖)

in US. In particular, since each edge e of ∂S is oriented by o, it has a canonical lift

ẽ ⊂ ∂US; we will denote ∂̃S := ∪e⊂∂Sẽ. If we let −e be the edge oriented in the opposite

way, then we get a di�erent lift which we will denote (−e)∼. Let −∂̃S = ∪e⊂∂S(−e)∼ and

±∂̃S = ∂̃S ∪ −∂̃S.
For a point x ∈ S the �ber O = π−1(x) is a circle, and we will orient it according to the

orientation of S. It is clear that the free homotopy class of O does not depend on x.
For each boundary edge e choose a point x ∈ e. Let v ∈ Tx(e) be the unit tangent vector

with orientation o. Then both (x, v) and (x,−v) are in π−1(x), and the half circle of π−1(x)
going from (x, v) to (x,−v) in the positive direction is denoted by

√
Oe. The exact position

of x on e will not be important in what follows.

De�nition 6 (Fundamental Groupoids). Let X be a path connected topological space and
{Ei}i∈I disjoint contractible subspaces of X. The fundamental groupoid π1(X, {Ei}i∈I) is the
groupoid (i.e. a category with invertible morphisms) whose objects are {Ei, i ∈ I} and whose
morphisms are the homotopy classes of oriented paths in X with endpoints in ∪i∈IEi. A
morphism of groupoids if a functor of the corresponding categories.

Recall that a group is a groupoid with only one object.

Lemma 8.1 (Extension of morphisms). With the above notation, let E ⊂ X be a contractible
subspace disjoint from ∪i∈IEi. Then given a morphism ρ : π1(X, {Ei}i∈I) → G for some
group G, an oriented path γ connecting some Ei to E, and an arbitrary g ∈ G there is a
unique extension ρ′ : π1(X, {Ei}i∈I ∪ {E}) → G of ρ such that ρ′(γ) = g and ρ′(α) = ρ(α)
for all α ∈Mor(Ei, Ej) for some i, j.
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Proof. We sketch a proof. Let β be a homotopy class of an oriented path connecting E to
some Ej; write β = (β ◦ γ) ◦ γ−1. Observe that β ◦ γ ∈ Mor(Ei, Ej) thus ρ is de�ned on
it; hence de�ne ρ′(β) = ρ(β ◦ γ) · g−1. Similarly if β is a path connecting Ej to E de�ne
ρ′(β) = g ·ρ(γ−1◦β). Finally if β is an endomorphism of E de�ne ρ′(β) = g ·ρ(γ◦β◦γ−1)·g−1.
We leave to the reader to verify that this is indeed a functor with the required properties. �

We shall be interested in two particular groupoids: π1(S, ∂S) and π1(US, ∂̃S). Note that

π : (US, ∂̃S)→ (S, ∂S) induces a surjective morphism π∗ of groupoids.

De�nition 7 (Flat twisted SL2(C)-bundle). A �at twisted SL2(C)-bundle (�twisted bundle�

in what follows to keep notation short) on S is a morphism ρ : π1(US; ∂̃S)→ SL2(C) such
that ρ(O) = −Id.

By Lemma 8.1 we extend ρ to a morphism (with the same notation) ρ : π1(US;±∂̃S)→
SL2(C) such that for every boundary edge e,

(138) ρ(
√

Oe) =

(
0 −1
1 0

)
.

Since S is not a closed surface, its fundamental group π1(S) is a free group.

Lemma 8.2. Suppose that ∂S 6= ∅. Then the set tw(S) of twisted bundles on S is the
a�ne algebraic variety SL2(C)n+k where

n = −1 + #{e ⊂ ∂S} and k = rank(π1(S)).

In particular the algebra χ(S) of its regular functions is generated by the matrix entries of
each of the copies of SL2(C).

Proof. Since US is trivial, the fundamental groupoids π1(S; ∂S) and π1(US, ∂̃S) are iso-
morphic. More explicitly, we claim that there are non canonical injective morphisms of

fundamental groupoids s∗ : π1(S; ∂S) → π1(US, ∂̃S). To build one, pick any non-zero
vector �eld on S which is positively tangent to the edges of ∂S: it exists because we are
not prescribing its behavior near the (non compact) cusps. This trivializes US as S × S1;
let s : S→ S× {1} be a section of π : US→ S.
The above isomorphism allows to provide an isomorphism from the set of twisted bundles

to morphisms from π1(S; ∂S)→ SL2(C). Indeed to each twisted bundle ρ : π1(US; ∂̃S)→
SL2(C) we associate ρ′ : π1(S; ∂S) → SL2(C) de�ned as ρ′ = ρ ◦ s∗ . Reciprocally given

ρ′ : π1(S; ∂S) → SL2(C) we extend it to ρ : π1(US; ∂̃S) → SL2(C) by setting ρ(O) = −Id
and ρ|π1(S×{1}) = ρ′.
To conclude we now argue that the set of morphisms ρ′ : π1(S; ∂S)→ SL2(C) is in bijec-

tion with SL2(C)n+k. Indeed �x a set of immersed smooth paths α1, . . . , αn ⊂ S connecting
a �xed edge e0 ⊂ ∂S to each other edge of ∂S as well as a set of paths whose endpoints are
in e0 representing generators g1, . . . , gk of π1(S; e0) (which is free because ∂S 6= ∅). Since
the fundamental group of S is free, the list of values (ρ′(α1), . . . , ρ′(αn), ρ′(g1) . . . , ρ′(gk)) ∈
SL2(C)n+k provides the sought non canonical bijection. �

Example 8.3. Let Pn be the n-polygon with vertices numbered in the orientation sense from
0 to n−1; then tw(Pn) = SL2(C)n−1 where the n−1 matrices are given by the holonomies of
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the diagonals connecting the edge v0v1 to each other edge. Then χ(Pn) = O(SL2)⊗n−1 and
in particular χ(B) = O(SL2) and χ(P3) = O(SL2) ⊗ O(SL2) (where by �equal� we mean
�non-canonically isomorphic to�).

Remark 8.4. The notion of �at twisted SL2(C)-bundle is closely related to the one consid-
ered in [Thu].

8.1. Trace functions for non oriented curves. We will identify the states of a stated
tangles with vectors in C2 as follows:

+ :=

(
1
0

)
,− :=

(
0
1

)
.

If ~x, ~y ∈ C2 let det(~x|~y) denote the determinant of the matrix whose �rst column is ~x and
second is ~y.
We will say an immersion a : [0, 1] → S is in good position if a(0), a(1) ∈ ∂S and the

tangent vectors ȧ(0), ȧ(1) are positively tangent to ∂S.
An immersion α : [0, 1] → S is transversal if α(0), α(1) ∈ ∂S and α is transversal to ∂S

at 0 and 1. One can bring such a transversal α to an arc a in good position by an isotopy
(relative 0 and 1) in a small neighborhood of α(0) and α(1). The canonical lift of a will be
denoted by α̂ and is called the good lift of α. Note that the homotopy class of α̂ is uniquely

determined by α, and we will consider α̂ as an element of π1(US; ∂̃S). Note that the good
lift of the inverse path α−1, de�ned by α−1(t) = α(1− t), is not the inverse of α̂, since before
lifting one has to isotope α−1 to a good position.
A stated transversal immersion is a transversal immersion whose end points are stated {±}.

De�nition 8 (Trace). Let ρ be a twisted bundle on S.
Assume α : [0, 1] → S is a stated transversal immersion with state ε at α(0) and η at

α(1). De�ne the trace of α by

tr(α) := det(η|ρ(α̂) · ε).
Assume β : [0, 1]→ S is an immersed closed curve (i.e. β(0) = β(1) and β has the same

tangent at 0 and 1). De�ne the trace of β by

tr(β) = tr(ρ(β̃′)),

where β′ is any smooth closed curve isotopic to β such that β′(0) ∈ ∂S.

In the �rst case if α′ is homotopic to α through stated transversal immersions and has the
same states as α then tr(α′) = tr(α) (indeed the homotopy lifts to a homotopy of α̂ and α̂′).
In the second case it is easy to see that tr(β) does not depend on the choice of β′, as the
images under ρ of any two such β′ are conjugate in SL2(C) and hence have the same trace.

Example 8.5. Let α : [0, 1] → S be a stated transversal immersion with state ε at α(0)
and η at α(1).

If ρ(α̂) =

(
a b
c d

)
, then tr(α) = det(η, ρ(α) · ε) =

η\ε + -
+ c d
- -a -b

.
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We remark that the matrix on the right, expressing the values of the traces for an immersed

transverse stated arc α is ρ(
√
O−1

)ρ(α̂) (see Equation (138)).

Remark 8.6. The notion of trace here is similar to the one introduced in [Mu], where trace
is de�ned only for oriented arcs. The novelty here is the good lift, which is used to de�ne
traces for unoriented arcs and the use of twisted bundles as representations of fundamental
groupoids.

When α is stated, we provide α−1 with states so that the state of α−1(t) is equal to the
state of α(1− t) for t = 0, 1.

Lemma 8.7. Suppose ρ is a twisted bundle on S. (a) Let α be a stated transversal immer-
sion. One has

ρ(α̂−1) = −ρ(α̂)−1.

As a consequence, tr(α) = tr(α−1).
(b) Let β : [0, 1]→ S be an immersed closed curve such that β(0) ∈ ∂S. Then

ρ(β̃)−1 = ρ(β̃−1).

As a consequence, if γ is any immersed closed curve then tr(γ) = tr(γ−1).

Proof. (a). A direct inspection shows that the homotopy class of the closed simple loop in

US given by the concatenation α̂−1 ◦ α̂ is O (see the left hand side of Figure 32). The �rst
equality follows as by de�nition ρ is a functor such that ρ(O) = −Id.
To prove that tr(α) = tr(α−1),
we compute the traces using the notation and content of Example 8.5:

If ρ(α̂−1) = −ρ(α̂)−1 =

(
−d b
c −a

)
, then tr(α) = det(η′, ρ(α) · ε′) =

η′\ε′ + -
+ c -a
- d -b

.

But since the state at α−1(0) is η and that at α−1(1) is ε, we get the claim in this case by
directly comparing with the transpose of the matrix of values provided in Example 8.5.
(b). Observe that if β is the black curve depicted in the r.h.s. of Figure 32, then β−1 is

regularly homotopic to the dotted curve β′ in the same picture. By construction β̇′(0) = β̇(0)

and β′ ◦ β is regularly homotopic to an eight-shaped immersed curve in a disc. Then β̃−1 is

homotopic to β̃′ in US and it holds ρ(β̃′◦ β̃) = Id, thus ρ(β̃−1) = ρ(β̃)−1. The last statement

now follows because ρ(β̃) ∈ SL2(C) so that tr(ρ(β̃)) = tr(ρ(β̃)−1).
�

Suppose α = ∪αi, where each αi is either a stated transversal non-oriented arc or a
non-oriented immersed closed curved. De�ne

tr(α) :=
∏
i

tr(αi).

Lemma 8.8. If q
1
2 = 1 the map tr : S (B)→ χ(B) sending a stated skein to its trace is an

isomorphism of algebras. The same holds for tr : S (Pn)→ χ(Pn) for every n ≥ 2.
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Figure 32. On the left the unoriented horizontal arc can be lifted to US in
two di�erent ways (dotted), depending on the choice of an orientation; their
composition is homotopic in US to O. On the right we exhibit a smooth
oriented curve β (solid) and a curve β′ (dotted) which is regularly homotopic
to β−1 . The composition of the two is a nullhomotopic 8-shaped loop in US.

Proof. Applying Theorem 3.4 at q
1
2 = 1 we get an explicit algebra isomorphism φ : S (B)→

O(SL2); by Example 8.3, we know that χ(B) is isomorphic to O(SL2). Furthermore, by
Example 8.5, the map tr is an algebra isomorphism. One argues similarly for Pn: applying
Corollary 4.20 at q

1
2 = 1 we get an explicit algebra isomorphism φ : S (Pn)→ O(SL2)⊗n−1;

by the proof of Corollary 4.20 a system of algebra generators of S (Pn) is easily seen to be
the arcs connecting the edge e0 to each other edge and stated arbitrarily. By Example 8.5,
the map tr on these generators provides a system of generators of O(SL2)⊗n−1 which by
Example 8.3 is isomorphic to χ(Pn). �

8.2. Splitting theorem for trace functions. In all this subsection, let c ⊂ S be an ideal
arc oriented arbitrarily, let S′ be the result of cutting S along c and let pr : S′ → S be
the projection and p̃r : US′ → US the projection induced on the unit tangent bundles. Let
pr−1(c) = c1 ∪ c2 ⊂ ∂S′ so that c1 has the positive orientation and c2 the negative one with
respect to the orientation induced by that of S′ on the boundary. For each ci let c̃i ⊂ US′

be its canonical lift and (−ci)∼ the canonical lift of −ci. Similarly let c̃ be the canonical lift
of c in US and (−c)∼ be the canonical lift of −c.

Lemma 8.9. Each [α] ∈ π1(US; ∂̃S) can be written as a composition [αk]◦ [αk−1]◦ · · · ◦ [α1]

of homotopy classes of immersed paths αi : [0, 1] → US such that αi({0, 1}) ⊂ ∂̃S ∪ c̃
and αi ∩ π−1(c) = ∂αi ∩ c̃. Such a decomposition is unique up to insertion/deletions of
compositions [α′] ◦ [α′−1] for [α′] ∈ π1(US; c̃) and replacement of [αj] by [α′′′j ] ◦ [α′′j ] ◦ [α′j] for

some [α′j], [α
′′′
j ] ∈ π1(US; ∂̃S ∪ c̃) and [α′′j ] ∈ π1(US; c̃) such that [αj] = [α′′′j ] ◦ [α′′j ] ◦ [α′j] (or

reciprocally).

Proof. Observe that π−1(c) ⊂ US is homeomorphic to an annulus A = R × S1 so that
c̃ = R×{1}. Represent the class [α] by a smooth curve α : [0, 1]→ US so that it is transverse
to A; then homotope it so that it intersects A exactly along c̃: this provides an instance of

the claimed splitting. If α′ : ([0, 1], {0, 1})→ (US, ∂̃S) is another smooth representative of
the same class intersecting A exactly along c̃, let h(t, s) : [0, 1] × [0, 1] → US be a smooth
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homotopy between α and α′ which is transverse to A. Then h−1(A) is a disjoint union of arcs
and circles embedded in [0, 1]×[0, 1] with boundary in [0, 1]×{0, 1} containing a �nite number
of maxima and minima with respect to the height function given by the second coordinate s.
Pick a �nite number of heights s0 = 0 < s1 < . . . < sn = 1 so that each strip [0, 1]× [si, si+1]
contains at most one maximum or minimum of the diagram of h−1(A). Each immersed path
αsi(t) := h(t, si) : [0, 1] → US intersects A transversally a �nite number of times and we
can then modify h locally around h−1(A)∩ ([0, 1]×{si}) without inserting new maxima and
minima so that αsi(t) intersects A only along c̃. Then the homotopies h|[si,si+1] transform
the immersed path αsi into αsi+1

by the moves described in the thesis: passing through a
minimum replaces a smooth curve α with a composition α′ ◦α′′ ◦α′′′ were all of α, α′, α′′, α′′′
intersect A only along c̃ and in their boundary; passing through a maximum has the converse
e�ect. Finally a strip containing no maxima and minima corresponds to a �nite number of
moves consisting in rewriting α◦α′ with α◦β ◦β−1 ◦α′ where β ∈ π1(US; c̃) is the homotopy
class represented by the restriction of h to a �vertical arc� of h−1(A) ∩ [0, 1] × [si, si+1] (i.e.
an arc joining [0, 1]× {si} and [0, 1]× {si+1}). �

If ρ′ : π1(US′; ∂̃S′)→ SL2(C) is a twisted bundle, then by Lemma 8.1 we can extend it to

a twisted bundle ρ′′ : π1(US′; ∂̃S′ ∪ (−c2)∼) → SL2(C) by setting ρ′′(
√

Oc2) =

(
0 −1
1 0

)
where

√
Oc2 is the path connecting c̃2 and (−c2)∼ by following in the positive direction the

�ber π−1(x) for some x ∈ c2.

Proposition 8.10. There is a surjective map i∗ : tw(S′)→ tw(S) de�ned as follows. Given

α ∈ π1(US; ∂̃S), decompose it as α = αk ◦ αk−1 ◦ · · · ◦ α1 where each αi ∈ π1(US; ∂̃S ∪ c̃)
intersects π−1(c) at most in its endpoints and exactly along c̃ (such a decomposition exists
by Lemma 8.9). Then for each ρ′ ∈ tw(S′) let

i∗(ρ′)(α) = ρ′′(α′k)ρ
′′(α′k−1) · · · ρ′′(α′1)

where α′i = p̃r−1(αi) is the lift of αi to π1(US′; ∂̃S′ ∪ (−c2)∼). Passing to the algebras χ(S)
and χ(S′) of regular functions on the algebraic varieties tw(S) and tw(S′), i∗ induces an
injective algebra morphism i : χ(S) ↪→ χ(S′) which we will call the �cutting morphism�
associated to c.

Proof. By Lemma 8.9 to check that i∗ is well de�ned it is su�cient to check that for each α
the choice of the decomposition does not a�ect the result of i∗(ρ′)(α). But this is evident if
we make an exchange α2 ◦ α1 ↔ α2 ◦ α′ ◦ α′−1 ◦ α1 or α↔ α′ ◦ α′′ ◦ α′′′ as in the statement
of Lemma 8.9 because ρ′ is a functor.
To prove surjectivity observe that by Lemma 8.1 we can extend any morphism ρ :

π1(US; ∂̃S)→ SL2(C) to ρ : π1(US; ∂̃S ∪ c̃ ∪ (−c)∼)→ SL2(C) setting in particular

ρ(
√

Oc) =

(
0 −1
1 0

)
.

Then if α′ ∈ π1(US′; ∂̃S′ ∪ (−c2)∼) de�ne ρ′ : π1(US′; ∂̃S′ ∪ (−c2)∼)→ SL2(C) by ρ′(α′) =

ρ(p̃r∗(α
′)) where p̃r∗ : π1(US′; ∂̃S′ ∪ (−c2)∼) → π1(US; ∂̃S ∪ (−c)∼) is the morphism

induced by the continuous map p̃r : US′ → US. Then letting ρ′ be the restriction of
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ρ′ to π1(US′; ∂̃S′) we have that by construction ρ = i∗(ρ′). Surjectivity of i∗ implies the
injectivity of i. �

The following proposition tells us that the trace functions behave exactly as the skeins
under cutting along an ideal arc (see Theorem 2.15). Suppose α is a stated transverse smooth
simple curve intersecting transversally c. Then α′ := pr−1(α) is a transverse smooth simple
curve which is stated at every boundary point except for newly created boundary points,
which are points in pr−1(c) ∩ α′ = (c1 ∪ c2) ∩ α′. A lift in S′ of α is a stated transverse
smooth simple curve β in S′ which is α′ equipped with states on pr−1(c ∩ α) such that if
x, y ∈ pr−1(c ∩ α) with pr(x) = pr(y) then x and y have the same state. If |c ∩ α| = k, then
α has 2k lifts in S′.

Proposition 8.11 (Cutting trace functions). Let α be a stated transverse smooth simple
curve intersecting transversally c. Then

(139) i(tr(α)) =
∑

tr(β)

where the sum is taken on all the lifts in S′ of α (i.e. as in Theorem 2.15). Furthermore if
c′ ⊂ S is another ideal arc disjoint from c and i′ is the associated cutting morphism, it holds
i′ ◦ i = i ◦ i′.

Proof. Since by Proposition 8.10 we already know that i is a well de�ned injective algebra
morphism, it is su�cient to check the statement for a system of stated transverse smooth
curves {γi ∈ I} which generate χ(S) as an algebra. By the proof of Lemma 8.2, we can
choose a �nite system of such γi such that |γi ∩ c| ≤ 2,∀i. Let α ∈ {γi, i ∈ I} be represented
by a smooth immersion α : [0, 1] → S intersecting transversally c with states st(α(0)) =
ε, st(α(1)) = η; if |α ∩ c| = 0 the statement is true. If |α ∩ c| = 1 then α = α2 ◦ α1 where
αi are transverse smooth simple curves with α1(1) = α2(0) ∈ c and are partially stated
by st(α1(0)) = ε, st(α2(1)) = η. Furthermore, up to switching α to α−1 we can suppose
(α̇1(1), ċ) form a positive basis of S.
Let then Ai (resp. A) be the 2 × 2 matrix expressing the values of tr(αi) (resp. tr(α))

with states in {±} as in Example 8.5; then, as remarked in the example Ai = ρ(
√
Oc)

−1ρ(α̂i)
(resp. A = ρ(

√
Oc)

−1ρ(α̂)) so that Equation (139) rewrites in this case as A = A2 · A1.
Now since the orientation induced by pr−1(c) is negative on c2 then in US the good lift α̂

of α is homotopic to p̃r(α̂2) ◦
√
Oc
−1 ◦ p̃r(α̂1) where αi are depicted in the left hand side of

Figure 33, therefore

A = ρ(
√

Oc)
−1ρ(α̂) = ρ(

√
Oc)

−1ρ(α̂2) ◦ ρ(
√
Oc)

−1 ◦ ρ(α̂1) = A2 · A1

and the claim is proved.
Suppose now that |α ∩ c| = 2 where α is a stated smooth immersion transverse to c;

by the proof of Lemma 8.2 we can suppose that the sign of the intersections of α and c is
opposite and we can split α as α3 ◦ α2 ◦ α1 where αi are transverse smooth immersions with
α1(1) = α2(0), α2(1) = α3(0) and partially stated so that st(α1(0)) = ε and st(α3(1)) = η.
Furthermore, up to switching α and α−1 we can suppose that (α̇1(1), ċ) form a positive basis
of S.
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Figure 33. On the l.h.s. the curve α (horizontal, solid) intersects once c
(vertical, solid). The dotted curve is regularly homotopic to α and is cut by

c into α2 ◦
√
O−1

and α1 where αi are in good position in S′. On the r.h.s.
α intersects twice c with opposite orientations. The dotted curve is regularly

homotopic to α and is cut by c in α3,
√
O−1 ◦α2 ◦

√
O−1

and α1, where αi are
in good position in US′.

As above let Ai = ρ(Oc)
−1 · ρ(α̂i) and A = ρ(Oc)

−1 · ρ(α̂) and Equation (139) is equivalent
to A = A3 ·A2 ·A1. Then again, as shown in the right hand side of Figure 33, α is regularly

homotopic in US to p̃r(α̂3) ◦
√
Oc
−1 ◦ p̃r(α̂2) ◦

√
Oc
−1 ◦ p̃r(α̂1). Therefore we have:

A = ρ(Oc)
−1 · ρ(α̂) = ρ(Oc)

−1 · ρ(α̂3) · ρ(Oc)
−1 · ρ(α̂2) · ρ(Oc)

−1 · ρ(α̂1) = A3 · A2 · A1

and the thesis follows. �

8.3. The classical limit of stated skein algebras.

Theorem 8.12. Suppose q1/2 = 1. The map sending a skein to its trace induces an algebra
isomorphism

tr : S (S)→ χ(S).

Proof. We �rst claim that the relations (7), (8), (9), (10) with q
1
2 = 1 are satis�ed by the

trace functions. By Lemma 8.8 the claim is true for bigons. But by Proposition 8.10 cutting
induces an injective algebra map, thus to verify local relations we can verify them in a bigon
containing the disc where the relations are depicted: this proves the claim in general.
The algebra isomorphism is proved as follows: pick an ideal triangulation of S and apply

to each edge of the triangulation Proposition 8.11 on the side of χ(S) and Theorem 2.15 on
S (S). We get the following diagram of algebra morphisms of which the horizontal lines are
injective and which is commutative by Proposition 8.11 and Theorem 2.15:

(140)

S (S)
↪→−−−→

⊗
i S (Ti)

tr

y ytr

χ(S)
↪→−−−→

⊗
i χ(Ti).

Since by Lemma 8.8 the right vertical arrow is an isomorphism we conclude.
�
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