
TRIANGULAR DECOMPOSITION OF SKEIN ALGEBRAS

THANG T. Q. LÊ

Abstract. By introducing a finer version of the Kauffman bracket skein algebra, we show
how to decompose the Kauffman bracket skein algebra of a surface into elementary blocks
corresponding to the triangles in an ideal triangulation of the surface. The new skein algebra
of an ideal triangle has a simple presentation. This gives an easy proof of the existence of
the quantum trace map of Bonahon and Wong. We also explain the relation between our
skein algebra and the one defined by Muller, and use it to show that the quantum trace
map can be extended to the Muller skein algebra.

1. Introduction

1.1. Kauffman bracket skein algebra of surface. Throughout this paper R is a com-
mutative ring with unit 1 and a distinguished invertible element q1/2 ∈ R.

Suppose S = S\P , where S is a compact oriented 2-dimensional manifold with (possibly

empty) boundary ∂S and P is a finite set. The Kauffman bracket skein algebra S̊ (S),
introduced by Przytycki [Pr] and Turaev [Tu], is defined as theR-module spanned by isotopy
classes of framed unoriented links in S× (0, 1) modulo the skein relation (1) and the trivial
loop relation (2):

= q + q−1(1)

= (−q2 − q−2)(2)

For a detailed explanation of these formulas, as well as other formulas and notions in the
introduction, see Section 2. There is a natural product making S̊ (S) an R-algebra, which
has played an important role in low-dimensional topology and quantum topology. In par-
ticular, it is known that S̊ (S) is a quantization of the SL2(C)-character variety of the
fundamental group of S along the Weil-Petersson-Goldman bracket [Tu, Bul, PS1, BFK].

The algebra S̊ (S) and its cousin defined for 3-manifolds have helped to establish the AJ
conjecture, relating the Jones polynomial and the A-polynomial of a knot, for a certain
class of knots [Le1, LZ]. A construction of Topological Quantum Field Theory is based on

S̊ (S) [BHMV]. Recently, S̊ (S) is found to have relations with quantum cluster algebras
and quantum Teichmüller spaces [BW1], and we also discuss these relations in this paper.

The skein algebra S̊ (S) is defined using geometric objects in a 3-manifold, and we want
to understand its algebraic aspects.
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1.2. Decomposition. Assume that each connected component of the boundary ∂S is dif-
feomorphic to the open interval (0, 1). Such a S is called a punctured bordered surface in
this paper. Every connected component of ∂S is called a boundary edge of S.

Very often S has an ideal triangulation. This means, S can be obtained from a finite
collection of disjoint ideal triangles by gluing together some pairs of edges of these triangles.
Here an ideal triangle is a triangle without vertices. We want to know if one can build, or
understand, the skein algebra of S from those of the ideal triangles and the way they are
glued together. This is reduced to the question how the skein algebra behaves under gluing
of boundary edges.

By a ∂S-tangle we mean a compact, framed, one-dimensional proper submanifold α of
S× (0, 1) such that

• at every boundary point of α the framing is vertical, and
• for every boundary edge e, the points in α ∩ (e× (0, 1)) have distinct heights,

(see details in Section 2). A stated ∂S-tangle is a ∂S-tangle equipped with a map s : ∂α→
{±}, called a state of α.

We define the stated skein algebra Ss(S) to be the free R-module spanned by the isotopy
classes of stated ∂S-tangles modulo the usual skein relation (1), the trivial loop relation (2),
and the new boundary relations (3) and (4), again see Section 2 for details.

= q−1/2 , = 0, = 0(3)

= q2 + q−1/2(4)

Suppose a, b are distinct boundary edges of S. Let S′ be the result of gluing a and b
together in such a way that the orientation is compatible, ie S′ = S/(a = b). We don’t

assume that S is connected. It is clear that if we want to relate S̊ (S′) to S̊ (S), we have
to enlarge the skein algebra to involve the boundary ∂S.

Let pr : S � S′ be the natural projection, and c = pr(a) = pr(b). Suppose α ⊂
(S′ × (0, 1)) is a stated ∂S′-tangle such that

α is transverse to c× (0, 1),(5)

the points in α ∩ (c× (0, 1)) have distinct heights and have vertical framing.(6)

Then α̃ := pr−1(α) ⊂ S × (0, 1) is a ∂S-tangle and inherits states from α at all boundary
points, except for those in (a ∪ b)× (0, 1). For every ε : α ∩ (c× (0, 1)) → {±} let α̃(ε) be
the stated ∂S-tangle whose states on (a ∪ b)× (0, 1) are the lift of ε.

Theorem 1. Assume S is punctured bordered surface, and S′ = S/(a = b), where a, b are
boundary edges of S. Let pr : S � S′ be the natural projection and c = pr(a) = pr(b).

(a) There exists a unique R-algebra homomorphism ρ : Ss(S
′)→ Ss(S) such that if α is

a ∂S′-tangle satisfying (5) and (6), then

(7) ρ(α) =
∑
ε

α̃(ε).

Here the sum is over all maps ε : α ∩ (c× (0, 1))→ {±}.
(b) In addition, ρ is injective.
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(c) For any 4 distinct boundary edges a1, a2, b1, b2 of S, the following diagram is commu-
tative:

(8)

Ss(S/(a1 = b1, a2 = b2))
ρ−−−→ Ss(S/(a1 = b1))

ρ

y yρ
Ss(S/(a2 = b2))

ρ−−−→ Ss(S).

Theorem 1 is proved in Section 3. The significance of the theorem is that the right hand
side of (7) does not depend on the isotopy class of α. For example, if

α =

( )
, α′ =

( )
,

where the directed line is part of c, then α and α′ are isotopic in S′, but

ρ

( )
=

( )
+

( )
+

( )
+

( )
ρ

( )
=

( )
,

and a priori it is not clear why ρ(α) = ρ(α′).
If we use only the skein relation (1) and the trivial loop relation (2) in the definition of

Ss(S), then we get a bigger algebra Ŝs(S), which was first introduced by Bonahon and Wong
in their work [BW1] on the quantum trace map. This paper is motivated by the question
if one can refine the definition of Bonahon and Wong to get a triangular decomposition of
the skein algebra. Relation (3) was also implicitly given in [BW1], but Relation (4) is new.
It is this new relation (4) which is responsible for the existence of the decomposition map
ρ : Ss(S

′)→ Ss(S) of Theorem 1.

We will show S̊ (S) embeds naturally into Ss(S), which follows from the consistency of
the defining relations (see Theorem 2.8 and Section 2). If we want the consistency and the
well-definedness of the decomposition map, then the coefficients on the right hand side of
relations (3) and (4) are uniquely determined up to certain symmetries, see Section 3.4. The
uniqueness makes the definition of our skein algebra more or less canonical.

Concerning the structure of Ss(S), we also have the following, whose proof is given in
Section 4.4.

Theorem 2. Suppose the ground ring R is a domain, and S is a punctured bordered surface.
Then Ss(S) is a domain, i.e. if xy = 0 and x, y ∈ Ss(S), then x = 0 or y = 0.

When ∂S = ∅, one has Ss(S) = S̊ (S), the original skein algebra, and the above result
had been known in this case, see [PS2, CM, BW1, Mu].

1.3. Triangular decomposition. Suppose S has an ideal triangulation ∆, ie S can be
obtained from a finite collection F̃ = F̃(∆) of disjoint ideal triangles by gluing together
some pairs of edges of these triangles. Choose an order of the gluing operations and apply
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Theorem 1 repeatedly, then we get an algebra embedding

(9) ρ∆ : Ss(S) ↪→
⊗
T∈F̃

Ss(T).

Parts (b) and (c) of Theorem 1 show that ρ∆ is injective, and does not depend on the order of
gluing. The map ρ∆, called a triangular decomposition of Ss(S), can be described explicitly
by a state sum formula.

It is natural now to study the stated skein algebra of an ideal triangle T as every repre-
sentation of Ss(T) gives us a representation of the stated skein algebra. In Theorem 4.6 we
give an explicit presentation of the stated skein algebra of an ideal triangle, which has 12
generators with a simple set of relations.

1.4. Application: quantum trace map. To each triangulation ∆ of S there is associated
the Chekhov-Fock algebra Y(∆), which is built from the Chekhov-Fock algebra Y(T) of
the ideal triangle. Actually Y(∆) is a subalgebra of

⊗
T∈F̃ Y(T), and is a version of the

multupiplicative Chekhov-Fock algebra studied in [Liu, BW1, Hi]. Bonahon and Wong

constructed a remarkable algebra map Tr∆ : Ŝs → Y(∆), called the quantum trace map,
which when q = 1, is the classical trace map expressing the PSL2-trace of a curve on the
surface in terms of the Thurston shear coordinates of the Teichmüller space. The existence
of the quantum trace map had been conjectured in [Fo, CF2]. Part of the construction of
Bonahon and Wong is based on difficult calculations.

As an application of our triangular decomposition, we will show that the quantum trace
map of Bonahon and Wong can be easily constructed using the triangular decomposition
(9) as follows. First, using the explicit presentation of Ss(T), we construct an algebra
homomorphism φ : Ss(T)→ Y(T). Then define κ∆ as the composition

(10) κ∆ : Ss(S)
ρ∆−→

⊗
T∈F̃(∆)

Ss(T)
⊗φ−→

⊗
T∈F̃(∆)

Y(T).

Theorem 3. The composition Tr∆ : Ŝs(S) → Ss(S)
κ∆−→

⊗
T∈F̃ Y(T) coincides with the

quantum trace map of Bonahon and Wong.

The proof is easy, and is given in Section 5. In essence, we replace the difficult calculations
in [BW1] by explicit presentation of the stated skein algebra of the ideal triangle.

For another approach to the quantum trace map using the Muller skein algebra see [Le2].

1.5. Relation to Muller’s skein algebra. For a marked surface, i.e. a pair (S,P) where
S is a compact oriented 2-dimensional manifold with (possibly empty) boundary ∂S and a
finite set P in the boundary ∂S, Muller [Mu] defines the skein algebra S Muller(S,P) using
the tangles whose end points are in P × (0, 1). See section 6 for details. The Muller skein
algebra is closely related quantum cluster algebras of marked surfaces.

Let S = S \ (P ∪ ∂′(S)), where ∂′(S) is the union of all connected components of ∂(S)
not intersecting P . Then S is a punctured bordered surface. In Section 6 we show that
there is a natural R-algebra isomorphism

Ω : S Muller(S,P)
∼=−→ Ss,+(S),
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where Ss,+(S) is the subalgebra of Ss(S) generated by stated ∂S-tangles whose states are

+ only. Using the isomorphism Ω, we can define the quantum trace map on S Muller(S,P)

κ̄∆ : S Muller(S,P)
Ω−→ Ss,+(S)

κ∆−→ Y(∆)

for any triangulation ∆ of S. The following is an extension of [BW1, Proposition 29].

Theorem 4. The quantum trace map κ̄∆ : S Muller(S,P)→ Y(∆) is injective.

1.6. Remarks. From the decomposition theorem (Theorem 1) one can easily show that
the stated skein algebra Ss(B) of an ideal bigon (see Section 4) has a natural structure
of Hopf algebra, and that the stated skein algebra of any punctured bordered surface with
non-empty border is a co-module over Ss(B). As observed by F. Costantino, Ss(B) is
naturally isomorphic to the quantum matrix algebra SL2(q), a quantum deformation of the
coordinate rings of the group SL2(C) (see e.g. [Kass, Chapter IV]). In a future work (joint
with Costantino), we show that many algebraic operations over SL2(q) have a transparent
interpretation in terms of the stated skein algebras, and conversely, many equations and
statements concerning stated skein algebras can be expressed by well-known operations in
SL2(q) theory. For example, the stated skein algebra of an ideal triangle is the braided
tensor product of two copies of Ss(B) = SL2(q). We will also discuss questions concerning
the geometry and the algebra of the classical limit of the stated algebra Ss(S), and the
meaning of the coefficients appearing in the defining relations of a state skein algebra.

1.7. Plan of paper. In Section 2 we give a detailed definition of the stated skein algebra
Ss(S) of a punctured bordered surface S, its symmetry, filtrations, and grading. We prove
Theorem 2.8 describing a natural R-basis of Ss(S). The proof is a standard application of
the diamond lemma. In Section 3 we prove Theorem 1. In Section 4 we give a presentation
of Ss(S) when S is an ideal bigon or an ideal triangle, and prove Theorem 2. We prove
Theorem 3 about the quantum trace map in Section 5. In Section 6 we discuss the Muller
skein algebra and prove Theorem 4.

1.8. Acknowledgement. Much of this work is inspired by the work of Bonahon and Wong
[BW1, BW2] on the quantum trace map. The author would like to thank F. Costantino,
G. Masbaum, A. Sikora, and V. Turaev for helpful discussions and the referees for comments
and corrections. The author is partially supported by an NSF grant. The author would like
to thank the CIMI Excellence Laboratory, Toulouse, France, for inviting him on a Excellence
Chair during the period January–June 2017.

2. Punctured bordered surfaces and skein algebras

2.1. Notations. Throughout the paper let Z be the set of integers, N be the set of non-
negative integers, C be the set of complex numbers. The ground ring R is a commutative
ring with unit 1, containing a invertible element q1/2. For a finite set X we denote by |X|
the number of elements of X.

In this section we fix a punctured bordered surface S, i.e. a surface obtained by removing
a finite set P from a compact oriented surface S with (possibly empty) boundary ∂S, with
the assumption that every connected component of the boundary ∂S has at least one point
in P . We don’t require S be to connected.
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Let ∂S = ∂S \ P . A connected component of ∂S is called a boundary edge of S. Every
boundary edge is diffeomorphic to the open interval (0, 1).

2.2. Tangles and height order. The boundary of the 3-manifold S× (0, 1) is ∂S× (0, 1).
For a point (z, t) ∈ S× (0, 1), t is called its height. A vector at (z, t) is called vertical if it is
parallel to the (0, 1) factor and points in the direction of 1. A 1-dimensional submanifold α
of S × (0, 1) is framed if it is equipped with a framing, i.e. a continuous choice of a vector
transverse to α at each point of α.

In this paper, a ∂S-tangle is an unoriented, framed, compact, properly embedded 1-
dimensional submanifold α ⊂ S× (0, 1) such that:

• at every point of ∂α = α ∩ (∂S× (0, 1)) the framing is vertical, and
• for any boundary edge b, the points of ∂b(α) := ∂α∩ (b× (0, 1)) have distinct heights.

Two ∂S-tangles are isotopic if they are isotopic in the class of ∂S-tangles. The emptyset,
by convention, is a ∂S-tangle which is isotopic only to itself.

For a ∂S-tangle α define a partial order on ∂(α) by: x > y if x and y are in the same
boundary edge and x has greater height. If x > y and there is no z such that x > z > y,
then we say x and y are consecutive.

2.3. Tangle diagrams, boundary order, positive order. As usual, ∂S-tangles are de-
picted by their diagrams on S, as follows. Every ∂S-tangle is isotopic to one with vertical
framing. Suppose a vertically framed ∂S-tangle α is in general position with respect to the
standard projection π : S×(0, 1)→ S, i.e. the restriction π|α : α→ S is an immersion with
transverse double points as the only possible singularities and there are no double points on
the boundary of S. Then D = π(α), together with the over/underpassing information at
every double point is called a ∂S-tangle diagram. Isotopies of (boundary ordered) ∂S-tangle
diagrams are ambient isotopies in S.

A ∂S-tangle diagram D with a total order on each set ∂b(D) := D ∩ b, for all boundary
edge b, is called a boundary ordered ∂S-tangle diagram. For example, the partial order on
∂(α) induces such a boundary order on ∂D.

Every boundary ordered ∂S-tangle diagram determines a unique isotopy class of the ∂S-
tangle, where the framing is vertical everywhere. When there is no confusion, we identify a
boundary ordered ∂S-tangle diagram with its isotopy class of ∂S-tangles.

Let o be an orientation of ∂S, which on a boundary edge may or may not be equal to
the orientation inherited from S. The o-order of a ∂S-tangle diagram D, is the order in
which points on ∂b(D) are increasing when going along the direction of o. It is clear that
every ∂S-tangle, after an isotopy, can be presented by an o-ordered ∂S-tangle diagram, i.e.
a ∂S-tangle diagram with o-order.

If o is the orientation coming from S, the o-order is called the positive order. Every isotopy
class of ∂S-tangles can be presented by a positively ordered ∂S-tangle diagram.

2.4. Framed Reidemeister moves. Every isotopy class of ∂S-tangle can be presented by
infinitely many boundary ordered ∂S-tangle diagrams. Just like in the theory of framed
links, two positively ordered ∂S-tangle diagrams D,D′ represent isotopic ∂S-tangles if and
only if one can be obtained from the other by a sequence of moves, each is either an isotopy
in S or one of the framed Reidemeister moves RI, RII, and RIII, described in Figure 1.
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This follows from the usual arguments in (framed) Reidemeister move theory, see e.g. [Oht,
Theorem 1.8] and [Tr].

Figure 1. Framed Reidemeister moves RI, RII, and RIII

If we don’t restrict to positive order, then two boundary ordered ∂S-tangle diagrams
represent isotopic ∂S-tangles if and only if one can be obtained from the other by a sequence
of moves, each is either an isotopy in S, one of RI, RII, RIII, and the exchange move described
in Figure 2.

Figure 2. Exchange move. Here the arrowed interval is a part of a boundary edge, and the

order on that part is such that the point closer to the tip of the arrow is higher. Besides,

these two points are consecutive in the height order.

2.5. Stated skein module/algebra. A stated ∂S-tangle α is a ∂S-tangle α equipped with
a state, which is a function s : ∂α→ {+,−}. Similarly, a stated ∂S-tangle diagram D is an
∂S-tangle diagram D equipped with a state s : ∂D → {±}.

The (Kauffman bracket) stated skein module Ss(S) is the R-module freely spanned by
isotopy classes of stated ∂S-tangles modulo the defining relations, which are the skein rela-
tion (11), the trivial loop relation (12), and the boundary relations (13) and (14):

= q + q−1(11)

= (−q2 − q−2)(12)

= q−1/2 , = 0, = 0(13)

= q2 + q−1/2(14)

Here is the convention about pictures in these identities, as well as in other identities in
this paper. Each shaded part is a part of S, with a stated ∂S-tangle diagram on it. Each
arrowed line is part of a boundary edge, and the order on that part is indicated by the arrow
and the points on that part are consecutive in the height order. The order of other end
points away from the picture can be arbitrary and are not determined by the arrows of the
picture. On the right hand side of the first identity of (13), the arrow does not play any role;
it is there only because the left hand side has an arrow.

Relation (11) says that if ∂S-tangle diagrams D1, D2 and D3, each is boundary ordered
and stated, are identical everywhere except for a small disk in which D1, D2, D3 are like in
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respectively the first, the second, and the third shaded areas, then [D1] = q[D2] + q−1[D3] in
the skein module Ss(S). Here [Di] is the isotopy class of the stated ∂S-tangle determined
by Di. Other relations are interpreted similarly.

For two ∂S-tangles α1 and α2 the product α1α2 is defined as the result of stacking α1

above α2. That is, first isotope α1 and α2 so that α1 ⊂ S× (1/2, 1) and α2 ⊂ S× (0, 1/2).
Then α1α2 = α1 ∪ α2. It is easy to see that this gives rise to a well defined product and
hence an R-algebra structure on Ss(S).

It is clear that if S1 and S2 are two punctured bordered surfaces, then there is a natural
isomorphism

(15) Ss(S1 tS2) ∼= Ss(S1)⊗R Ss(S2).

Remark 2.1. If we don’t impose the boundary relations (13) and (14), then we get a bigger

skein module Ŝs(S), which was first introduced in [BW1]. Of course Ss(S) is a quotient of

Ŝs(S). If ∂S = ∅, then Ss(S) = Ŝs(S) = S̊ (S).

Remark 2.2. If S is allowed to have a closed boundary component, then unless q2 = 1, the
defining relations are not consistent and the skein module Ss(S) is small.

2.6. Consequences of defining relations. Define Cε
ε′ for ε, ε′ ∈ {±} by

(16) C+
+ = C−− = 0, C+

− = q−1/2, C−+ = −q−5/2.

Lemma 2.3. In Ss(S) one has

−q−3 = = −q3(17)

= Cε
ε′(18)

= = −q3Cε′

ε(19)

Proof. Identity (17) follows from the skein relation and the trivial loop relation, see [Kau].
Except for (ε, ε′) = (−,+), (18) is a defining relation. Applying (14), then (12), then (13),

= q2 + q−1/2 = q2(q−1/2) + q−1/2(−q2 − q−2) = −q−5/2,

which proves the remaining case of (18).
The first equality of (19) follows from a rotation by π. Using isotopy, we have

= = −q3 = −q3Cε′

ε

where the 2nd and the 3rd identities follow from (17) and (18). �

Lemma 2.4 (Height exchange move). (a) One has

= q−1
( )

, = q−1
( )

, = q
( )

(20)

q
3
2 − q−

3
2 = (q2 − q−2) .(21)
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(b) Consequently, if q = 1 or q = −1, then for all ε, ε′ ∈ {±},

(22) = q .

Proof. (a) Using isotopy, then skein relation (11), and then (18), we have

(23) = = q−1
( )

+ q
( )

= q−1
( )

+ qCε′

ε

( )
.

When ε = ε′, Cε′
ε = 0, and (23) proves the first two identities of (20).

Suppose ε = +, ε′ = −. Using (23), then (14) and (12), we have

= q−1
( )

− q−3/2
( )

= q
( )

,

proving the last identity of (20). Now suppose ε = +, ε′ = −. Rewrite (14) in the form

(24) = q−2 − q−5/2

Using (24) in (23), we get (21).
(b) follows from (a). �

Corollary 2.5. If q = 1, then Ss(S) is commutative.

Proof. When q = 1, Identity (22) shows that the height order does not matter in Ss(S).
Besides, the skein relation show that over-crossing is the same as under-crossing. Hence for
any two ∂S-tangles α, β, we have αβ = βα. �

Remark 2.6. In general, because of relation (22), Ss(S) is not commutative when q = −1.
For example, when S is an ideal triangle, Ss(S) is not commutative when q = −1. This

should be contrasted with the case of the usual skein algebra S̊ (S), which is commutative
and is canonically equal to the SL2(C) character variety of π1(S) if R = C and q = −1
(assuming S is connected), see [Bul, PS1].

2.7. Reflection anti-involution.

Proposition 2.7. Suppose R = Z[q±1/2]. There exists a unique Z-linear anti-automorphism
χ : Ss(S)→ Ss(S), such that χ(q1/2) = q−1/2 and χ(α) = ᾱ, where α is a stated ∂S-tangle,
and ᾱ the image of α under the reflection of S× (0, 1), defined by (z, t)→ (z, 1− t). Here
χ is an anti-automorphism means for any x, y ∈ Ss(S) and r ∈ R,

χ(x+ y) = χ(x) + χ(y), χ(xy) = χ(y)χ(x).

Proof. Since Ss(S) is spanned by stated ∂S-tangles, the uniqueness is clear.
Let L be the free R-module with basis the set of isotopy classes of stated ∂S-tangles and

χ̃ : L → L be the Z-linear map defined by χ̃(rα) = r̄ᾱ, where for r ∈ R, r̄ is the image of r
under the involution q1/2 → q−1/2. Using the height exchange move (Lemma 2.4), one sees
that χ respects all the defining relations, and hence descends to a map χ : Ss(S)→ Ss(S).
It is clear that χ is an anti-automorphism. �

Clearly χ2 = id. We call χ the reflection anti-involution.
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2.8. Basis of stated skein module. A ∂S-tangle diagram D is simple if it has neither
double point nor trivial component. Here a closed component of D is trivial if it bounds
a disk in S, and an arc component of α is trivial if it can be homotoped relative to its
boundary, in the complement of other components of D, to a subset of a boundary edge.
By convention, the empty set is considered as a simple stated ∂S-tangle diagram with 0
component.

We order the set {±} so that + is greater than −. A state s : ∂D → {±} of a boundary
ordered ∂S-tangle diagram D is increasing if for any x, y ∈ ∂D with x ≥ y, one has
s(x) ≥ s(y). Thus, in an increasing state, on any boundary edge, the points with + state
are above all the points with − state.

Let B(S) be the set of of all isotopy classes of increasingly stated, positively ordered,
simple ∂S-tangle diagrams.

Theorem 2.8. As an R-module, Ss(S) is free with basis B(S).

Proof. The proof uses the diamond lemma, in the form explained in [SW]. For a set X denote
by RX the free R-module with basis X, with the convention RX = {0} when X = ∅. In
this proof, all the ∂S-tangle diagrams are assumed to have positive order.

Let B̃ be the set of all isotopy classes of stated ∂S-tangle diagrams. Then B = B(S)
is a subset of B̃. Define a binary relation → on RB̃ as follows. First assume D ∈ B̃ and
E ∈ RB̃. We write D → E if D is any element in B̃ presented by the left hand side of an
identity in the defining relations (11)–(14), and E is the corresponding right hand side.

Now assume E ′, E ′′ ∈ RB̃, with E ′ =
∑k

i=1 ciDi, where Di ∈ B̃. We write E ′ → E ′′ if

there is an index j ≤ k and E ∈ RB̃ with Dj → E, such that E ′′ is obtained from E ′ by

replacing Dj with E in the sum
∑k

i=1 ciDi.

Let
?−→ be the reflexive and transitive relation on RB̃ generated by →, i.e. E

?−→ E ′ if
either E = E ′ or there are E1, E2, . . . , Ek ∈ RB̃ with Ei → Ei+1 for all i = 1, . . . , k− 1 such

that E1 = E,Ek = E ′. If E
?−→ E ′, we say E ′ is a descendant of E.

Let ∼ be the equivalence relation on RB̃ generated by →. We will prove the following
two lemmas in Subsection 2.9.

Lemma 2.9. One has RB̃/ ∼ = Ss(S).

Lemma 2.10. The relation → is
(i) terminal, i.e. there does not exist an infinite sequence E1 → E2 → E3 → . . . , and
(ii) locally confluent on B̃, i.e. if D → E1 and D → E2 for some D ∈ B̃, then E1, E2

have a common descendent.

Since → is terminal and locally confluent on B̃, [SW, Theorem 2.3] shows that B̃irr, the
subset of elements D ∈ B̃ for which there is no E ∈ RB̃ such that D → E, is a basis of
RB̃/ ∼, which is Ss(S) (by Lemma 2.9). It remains to notice that B̃irr = B. The theorem
is proved. �

2.9. Proofs of Lemmas 2.9 and 2.10.

Proof of Lemma 2.9. Two stated ∂S-tangle diagrams define the same stated ∂S-tangle if
and only if one can be obtained from the other by a sequence of framed Reidemeister moves
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RI, RII and RIII moves of Figure 1. Thus, Ss(S) = RB̃/(rel), where (rel) consists of the
defining relations (11)–(14) and the the moves RI, RII, RIII. But the three moves RI, RII,
and RIII are consequences of the skein relation (11) and the trivial knot relation (12) (see
[Kau]). Hence, Ss(S) = RB̃/(rel) = RB̃/ ∼. �

Suppose s : ∂(α)→ {±} is a state of a ∂S-tangle α. A pair (x, y) ∈ ∂(α)2 is s-decreasing
if x > y and s(x) = −, s(y) = +. Let nd(s) be the number of s-decreasing pairs. Then
nd(s) = 0 if and only if s is increasing.

Proof of Lemma 2.10. (a) For D ∈ B̃, with state s, let deg(D) be the sum of 4 terms: two
times the number of double points, the number of components, the number of boundary
points, and nd(D). By checking each of the relations (11)–(14), one sees that if D ∈ B̃ and
D → E ∈ RB̃, then E is a linear combination of elements Dj ∈ B̃ with deg(Dj) < deg(D).
Hence, by [SW, Theorem 2.2] the relation → is terminal.

(b) Suppose D is a stated ∂S-tangle diagram. For now we don’t consider D up to isotopy.
A disk d ⊂ S is called D-applicable if D ∩ d is the left hand side of one of the defining
relations (11)–(14). In that case let Fd(D) =

∑
j cjDj be the corresponding right hand side,

so that D → Fd(D). Here Dj = D outside d.
Suppose E =

∑
ciDi, where 0 6= ci ∈ R and Di is a stated ∂S-tangle diagram for each i.

A disk d ⊂ S is said to be E-applicable if d is Di-applicable for each i. In that case, define

Fd(E) =
∑
ciFd(Di). Clearly E

?−→ Fd(E).
If d1, d2 are two disjoint D-applicable disks, then d1 is Fd2(D)-applicable and d2 is Fd1(D)-

applicable, and Fd1(Fd2(D)) = Fd2(Fd1(D)) is a common descendant of Fd1(D) and Dd2(D).
Now suppose D → E1 and D → E2. We have to show that E1 and E2 have a common

descendant. There are applicable D-disks d1 and d2 such that E1 = Fd1(D) and E2 = Fd2(D).
If d1 and d2 are disjoint, then E1 and E2 have a common descendant. It remains the case
when d1 ∩ d2 6= ∅.

The support of a D-applicable disk d is defined to be

• the double point for the case of (11),
• the closed disk bounded by the loop for the case of (12)
• the closed disk bounded the arc of D and part of the boundary edge between the two

end points of the arc in the case of (13), and
• the closed interval between the two boundary points on the boundary edge in the

case of (14).

In doing the move D → Fd(D), we can assume that d is a small neighborhood of its support.
Hence if the supports of d1 and d2 are disjoint, then we can assume that d1 and d2 are
disjoint. By inspecting the left hand sides of (11)–(14) we see that there are only three cases
when supports of d1 and d2 are not disjoint. These cases are described in Figures 3–5.

Note that the proof of (18) actually shows that

(25)
?−→ −q−5/2 .
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Figure 3. Case 1: The shaded area on the right (resp. left) is d1 (resp. d2). The shaded

area in the middle is d1 ∪ d2

Figure 4. Case 2: The shaded area on the right (resp. left) is d1 (resp. d2).

Figure 5. Case 3: The shaded area on the right (resp. left) is d1 (resp. d2).

Case 1. From (13) we have E1 = Fd1(D) = 0. Using (14) then (25),

E2 = Fd2(D) = q2 + q−1/2 ?−→ −q−1/2 + q−1/2 = 0.

Case 2. From (13) we have E1 = Fd1(D) = 0. Using (14) then (25),

E2 = Fd2(D) = q2 + q−1/2 ?−→ −q−1/2 + q−1/2 = 0.

Case 3. From (13) we have

E1 = Fd1(D) = q−1/2 .

Using (13), we have

E2 = Fd2(D) = q2 + q−1/2 ?−→ q−1/2 = E1.

In all three cases, E1 is a common descendant of E1 and E2, completing the proof. �

The empty set ∅, considered as a simple stated ∂S-tangle diagram, is an element of the
R-basis B(S) of Ss(S) (see Theorem 2.8). As customary in skein theory, we identify R with
a subset of Ss(S) by x→ x · ∅.

2.10. More general boundary order. Let o be an orientation of ∂S. For a boundary edge
b, we say o is positive on b if it is equal to the orientation inherited from S, otherwise it is
called negative on b. Equation (14) can be rewritten as (24), which expresses a positive order
term as a sum of a negative order term and a term of lesser complexity. Let B(o;S) be the
set of of all isotopy classes of increasingly stated, o-ordered, simple ∂S-tangle diagrams. The
proof of Theorem 2.8 can be easily modified to give the following more general statement.
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Theorem 2.11. Suppose S is a punctured bordered surface and o is an orientation of ∂S.
Then B(o;S) is an R-basis of Ss(S).

2.11. Filtration. Note that |∂(α)| is even, for any ∂S-tangle α. For each non-negative
integer m let Fm = Fm(Ss(S)) be the R-submodule of Ss(S) spanned by all ∂S-tangles
α such that |∂(α)| ≤ 2m. Clearly Fm ⊂ Fm+1 and FmFk ⊂ Fm+k. In other words, Ss(S)
is a filtered algebra with the filtration {Fm}. The associated graded algebra is denoted by
Gr(Ss(S)), with Grm(Ss(S)) = Fm/Fm−1 for m ≥ 1 and Gr0 = F0. The following is a
consequence of Theorem 2.11.

Proposition 2.12. Let S be a punctured bordered surface and o be an orientation of ∂S.
(a) The set {α ∈ B(o;S) | |∂(α)| ≤ 2m} is an R-basis of Fm(Ss(S)).
(b) The set {α ∈ B(o;S) | |∂(α)| = 2m} is an R-basis of Grm(Ss(S)).

2.12. Grading. For a boundary edge b and a stated ∂S-tangle α define

δα(b) =
∑

u∈∂b(α)

s(u) ∈ Z,

where, as usual, we identify + with +1 and − with −1. Let E∂ be the set of all boundary
edges. Then δα ∈ ZE∂ , the set of all maps E∂ → Z.

For k ∈ ZE∂ let Gk = Gk(Ss(S)) be the R-submodule of Ss(S) spanned by all stated ∂S-
tangles α such that δα = k. From the defining relations it is clear that Ss(S) =

⊕
k∈ZE∂ Gk

and GkGk′ ⊂ Gk+k′ . In other words, Ss(S) is a graded algebra with the grading {Gk}k∈ZE∂ .
Fix a boundary edge b. For k ∈ Z let Gb,k = Gb,k(Ss(S)) be the R-submodule of Ss(S)

spanned by all stated ∂S-tangles α such that δα(b) = k. Again Ss(S) =
⊕

k∈ZGb,k and
Gb,kGb,k′ ⊂ Gb,k+k′ . In other words, Ss(S) is a Z-graded algebra with the grading {Gb,k}k∈Z.
The following is a consequence of Theorem 2.11.

Proposition 2.13. Let S be a punctured bordered surface and o be an orientation of ∂S.
(a) The set {α ∈ B(o;S) | δα = k} is an R-basis of Gk(Ss(S)).
(b) The set {α ∈ B(o;S) | δα(b) = k} is an R-basis of Gb,k(Ss(S)).

The Z-grading {Gb,k} allows to define the b-leading term ltb(x) of non-zero x ∈ Ss(S).
Suppose x =

∑
j cjDj, where 0 6= cj ∈ R and Dj ∈ B(o;S). Assume k = maxj δDj

(b).
Define

(26) ltb(x) =
∑

δDj
(b)=k

cjDj.

2.13. The ordinary skein algebra S̊ (S). Recall that the ordinary skein algebra S̊ (S)
is the R-module freely spanned by isotopy classes of framed links in S× (0, 1) modulo the

skein relation (11) and the trivial loop relation (12). The map id∗ : S̊ (S)→ Ss(S), defined
on a framed link α by id∗(α) = α, is an R-algebra homomorphism.

Corollary 2.14. The map id∗ : S̊ (S) → Ss(S) is an embedding, and id∗(S̊ (S)) =
F0(Ss(S)).
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Proof. The manifold S̊ := S \ ∂S is also a punctured bordered surface without boundary.

It is clear that S̊ (S) = Ss(S̊), and the R-basis of the latter described by Theorem 2.8 is
the R-basis of F0(Ss(S)). The result follows. �

3. Decomposing and gluing punctured bordered surfaces

3.1. Gluing punctured bordered surfaces. Suppose a and b are distinct boundary edges
of a punctured bordered surface S. Let S′ = S/(a = b), the result of gluing a and b together
in such a way that the orientation is compatible. The canonical projection pr : S → S′

induces a projection p̃r : S× (0, 1)→ S′ × (0, 1). Let c = pr(a) = pr(b).
A ∂S′-tangle α ⊂ (S′ × (0, 1)), is said to be vertically transverse to c if

• α is transverse to c× (0, 1),
• the points in ∂c α := α∩ (c× (0, 1)) have distinct heights, and have vertical framing.

Suppose α is a ∂S′-tangle vertically transverse to c. Then α̃ := p̃r−1(α) is a ∂S-tangle.
Suppose in addition α is stated, with state s : ∂α→ {±}. For any ε : α∩ (c× (0, 1))→ {±}
define α̃(ε) be α̃ equipped with state s̃ defined by s̃(x) = s(pr(x)) if pr(x) ∈ ∂α and
s̃(x) = ε(pr(x)) if pr(x) ∈ c. We call α̃(ε) a lift of α. If |α ∩ (c× (0, 1))| = k, then α has 2k

lifts.

3.2. Proof of Theorem 1. For the reader convenience we reformulate Theorem 1 here.

Theorem 3.1. Suppose a and b are two distinct boundary edges of a punctured bordered
surface S. Let S′ = S/(a = b), and c be the image of a (or b) in S′.

(a) There is a unique R-algebra homomorphism ρ : Ss(S
′) → Ss(S) such that if α is a

stated ∂S′-tangle vertically transverse to c, then ρ(α) =
∑

β[β], where the sum is over all

lifts β of α, and [β] is the element in Ss(S) represented by β.
(b) In addition, ρ is injective.
(c) For four distinct boundary edges a1, a2, b1, b2 of S, the following diagram is commuta-

tive:

(27)

Ss(S/(a1 = b1, a2 = b2))
ρ−−−→ Ss(S/(a1 = b1))

ρ

y yρ
Ss((S/(a2 = b2)

ρ−−−→ Ss(S).

Proof. (a) Let T (c) be the set of all stated ∂S′-tangles vertically transverse to c (no isotopy
is considered here), and V be the set of all isotopy classes of stated ∂S′-tangles. The map
iso : T (c) → V , sending an element in T (c) to its isotopy class as a stated ∂S′-tangle, is
surjective. Define

ρ̃ : T (c)→ Ss(S), ρ̃(α) =
∑

β: lifts of α

[β].

Claim 1. If α, α′ ∈ T (c) and iso(α) = iso(α′), then ρ̃(α) = ρ̃(α′).
Suppose the claim holds. Then ρ̃ descends to a map ρ′ : V → Ss(S). Recall Ss(S

′) is
defined as the R-span of V modulo the defining relations (11)–(14). The locality (of these
defining relations) shows that ρ′ respects the defining relations. Hence ρ′ descends to an
R-homomorphism ρ : Ss(S

′)→ Ss(S), which is clearly an R-algebra homomorphism.
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It remains to prove Claim 1. We break the proof into steps.
Step 1. Let D(c) be the set of all stated ∂S′-tangle diagrams transverse to c. Each

D ∈ D(c) is equipped with the positive boundary order. For a total order O on D ∩ c
and a map ε : D ∩ c → {±} let D̃(O, ε) be the stated ∂S-tangle diagram obtained from
D by splitting along c. Here the height order and the states on a and b are the lifts of O
and ε, while the height order and the states on other boundary edges are the lifts of the
corresponding ones of D. Define

ρ̃(D,O) =
∑
ε

D̃(O, ε), where the sum is over all maps ε : D ∩ c→ {±}.

Step 2. Recall that α ∈ T (c), i.e. α is a stated ∂S′-tangle vertically transverse to c. A
small smooth isotopy, keeping framing vertical on c × (0, 1), does not move α out of T (c),
and does not change ρ̃(α). Thus, after a small smooth isotopy of this type we can assume
that α has a stated ∂S′-tangle diagram D ∈ D(c). The height order on α∩ c× (0, 1) induces
a total order O on D ∩ c. From the definition, ρ̃(α) = ρ̃(D,O).

Similarly, α′ is presented by (D′,O′), where D′ ∈ D(c) and O′ is a total order on D′ ∩ c.
To prove the claim, we need to show that ρ̃(D,O) = ρ̃(D′,O′).

Step 3. Recall that α and α′ are isotopic and their diagrams D,D′ are transverse to c.
By considering Reidemeister moves involving D∪ c, we see that D′ ∪ c can be obtained from
D ∪ c by a sequence of moves, each is
(i) a Reidemeister move RI, RII, or RIII not involving c; or
(ii) move IIa (which involves c) as shown in Figure 6; or
(iii) move IIIa (which involves c) as shown in Figure 6; or
(iv) move IV which reorders the total order on D ∩ c, see Figure 6;
or an isotopy of S′ which fixes c as a set during the isotopy.

Figure 6. Move IIa (left), Move IIIa (middle), and Move IV (right). The vertical line is part

of c, and the arrow indicates the order.

It is clear that ρ̃ is invariant under isotopy of S′ which fixes c and moves RI, RII, and
RIII not involving c. We will see that if ρ̃ is invariant under move IIa, then it is invariant
under all other moves.
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Step 4. Now we show that ρ̃ is invariant under move IIa. We have

ρ̃

( )
=

( )
+

( )
+

( )
+

( )
= −q5/2

( )
+ q1/2

( )
= −q5/2

( )
+ q1/2

(
q2

( )
+ q−1/2

( ))
=

( )
= ρ̃

( )
,

where the second identity follows from the values of trivial arcs given by (13) and Lemma 2.3,
while the third identity follows from (14). Thus, ρ̃ is invariant under Move IIa.

Step 5. Now we show that the invariance of Moves IIIa and IV follows from the invariance
of Moves RI, RII, RIII (not involving c), and IIa. Consider Move IV. Using the skein relation
at the two crossings, we have

ρ̃

( )
= ρ̃

( )
+ ρ̃

( )
+ q−2 ρ̃

( )
+ q2 ρ̃

( )
.

Using Move IIa in the last 3 terms of the right hand side, then the trivial loop relation which
says a trivial knot is −q2 − q−2, we get

ρ̃

( )
= ρ̃

( )
,

which proves that ρ̃ is invariant under Move IV.
Finally consider IIIa. Using the skein relation, we have

ρ̃

( )
= q ρ̃

( )
+ q−1 ρ̃

( )
(28)

ρ̃

( )
= q ρ̃

( )
+ q−1 ρ̃

( )
.(29)

The right hand sides of (28) and (29) are equal by move IIa. Hence the left hand sides of
(28) and (29) are equal. Using Move IV to reverse the arrow on the left hand side of (29),
we get the invariance of IIIa. This completes the proof of part (a).

(b) Fix an orientation o′ of ∂S′ and an orientation of c. Define the orientation o of ∂S
such that the map pr : S→ S′ preserve the orientation on each boundary edge of S. We will
equip any ∂S′-tangle diagram (resp. ∂S′-tangle diagram) with the o′-order (resp. o-order).

Suppose D is an increasingly stated ∂S′-tangle diagram transverse to c. Let D̃(+) be the
lift of D in which all the state of every endpoint in a (and hence in b) is +. Note that the
state of D̃(+) is also increasing. In general, D̃ may not be simple. After an isotopy we can
assume that D is c-normal, i.e. |D ∩ c| = µ(D, c), which is the smallest integer among all
|D′ ∩ c| with D′ isotopic to D. Then D̃ = pr−1(D) is a simple ∂S-tangle diagram, and from
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the definition of ρ and the b-leading term (see Section 2.12), we have

(30) lta(ρ(D)) = D̃(+) in Ss(S).

In particular, the isotopy class of D̃(+) does not depend on how we isotope D to a c-normal
position. Note that the isotopy class of D̃(+) totally determine the isotopy class of D, i.e.
the following map is injective:

(31) B(o′;S′)→ B(o;S), D → D̃(+).

Suppose 0 6= x ∈ Ss(S
′). Then x =

∑
j cjDj, where 0 6= cj ∈ R and Dj ∈ B(o′;S′).

Assume maxj µ(Dj, c) = k. From (30) and the injectivity of the map (31), we have

(32) lta(ρ(x)) =
∑

µ(Dj ,c)=k

cjD̃j(+) 6= 0.

This proves ρ(x) 6= 0, and ρ is injective.
(c) The commutativity of Diagram (27) follows immediately from the definition. �

3.3. Triangular decomposition. Suppose a punctured bordered surface S is obtained by
removing a finite set P from a compact oriented surface S.

Suppose ∆ is an ideal triangulation of S, i.e. a triangulation of S whose vertex set is
exactly P . By cutting along all the edges of ∆, we see that there is a finite collection
F̃ = F̃(∆) of disjoint ideal triangles and a finite collection of disjoint pairs of elements
in Ẽ = Ẽ(∆), the set of all edges of ideal triangles in F̃ , such that S is obtained from

S̃ :=
⊔

T∈F̃ T by gluing the two edges in each pair. It may happen that two edges of one
triangle are glued together.

From Theorem 3.1 we have an injective algebra homomorphism

(33) ρ∆ : Ss(S) ↪→
⊗

T∈F(∆)

Ss(T).

The map ρ∆ is described explicitly by Theorem 3.1. It is natural now to study the stated
skein algebra of an ideal triangle.

It is known that S is triangulable, i.e. it has a triangulation, if and only if |P| ≥ 1 and
(S,P) is not one of the followings: (i) S is a sphere with |P| ≤ 2, (ii) S is a disk with
P ⊂ ∂S and |P| ≤ 2.

3.4. On the uniqueness of the defining relations. Suppose we modify the defining
relations by replacing (13) and (14) with respectively the more general

= z1 , = z2 , = z3(34)

= z4 + z5 ,(35)

where zi ∈ R. Then it is easy to see that the set B(S) still spans the new Ss(S). If we
want (i) consistency: B(S) is a basis of Ss(S) and (ii) decomposition: Theorem 3.1 holds,
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then repeating the proofs we can find exactly 4 solutions (z1, z2, z3, z4, z5). In all of them
z2 = z3 = 0. The four solutions are

z1 = z5 = εq−1/2, z4 = q2, ε ∈ {±1}
z1 = z5 = εq−5/2, z4 = q−2, ε ∈ {±1}.

The group Z/2×Z/2, generated by two commuting involutions, acts on the set of solutions
as follows. The first involution replaces each diagram α with k + states in (34) and (35) by
(−1)kα. The second involution switches all the states from − to + and + to − in (34) and
(35). It is easy to see that each involution transforms a solution to another solution. Then
all the 4 solutions are obtained from one of them, say the solution we used in (13) and (14),
by the action of this group Z/2× Z/2. In this sense our solution is unique.

Remark 3.2. Using Theorem 3.1 one can interpret the assignment S → Ss(S) as a co-
presentation of a certain modular operad of surfaces. For details of modular operads, see [Vo].

4. Ideal bigon and ideal triangle

4.1. Definitions and notations. An arc α in a punctured bordered surface S is a properly
embedded submanifold diffeomorphic to [0, 1]. If the two end points of α are in the same
boundary edge, we call α a returning arcs.

Suppose s : ∂(α) → {±} is a state of a ∂S-tangle α, where S is a punctured bordered
surface. A permutation of s is any state of the form s◦σ, where σ : ∂(α)→ ∂(α) is a bijection
such that if x ∈ b, where b is a boundary edge, then σ(x) ∈ b. The only permutation of s
which is increasing is denoted by s↑.

Suppose s : ∂(α) → {±} is not increasing. There there is a pair u, v ∈ ∂(α) such that
u > v, u and v are consecutive in the height order, and s(u) = −, s(v) = +. The new state
s′ : ∂(α) → {±}, which is equal to s everywhere except s′(u) = +, s′(v) = −, is called a
simple positive permutation of s.

For elements x, y of anR-module, x
•
= y will mean there is an integer j such that x = qj/2y.

Figure 7. From left to right: bigon, arc α, α(2), α2, and α(−,+)

4.2. Ideal bigon. Suppose B is an ideal bigon, i.e. B is obtained from a disk by removing 2
points on its boundary. Let a and b be the boundary edges of B. Let α be an arc whose two
end points are not in the same boundary edge, and let α(k) be k parallels of α. See Figure 7.
Unless otherwise stated, the order of each ∂B-tangle diagram is positive. For example, the
diagram of α2 is different from α(2) and is depicted in Figure 7. For ε, ε′ ∈ {±} let α(ε, ε′)
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be α equipped with the state s such that s(α ∩ a) = ε, s(α ∩ b) = ε′). Recall that Cε
ε′ is

defined by (16).

Theorem 4.1. Let B be an ideal bigon with the above notations. Then Ss(B) is the R-
algebra generated by X = {α(ε, ε′) | ε, ε′ ∈ {±}}, subject to the relations

α(ε,−)α(ε′,+) = q2α(ε,+)α(ε′,−)− q5/2Cε
ε′ ∀ε, ε′ ∈ {±}(36)

α(−, ε)α(+, ε′) = q2α(+, ε)α(−, ε′)− q5/2Cε
ε′ ∀ε, ε′ ∈ {±}.(37)

Remark 4.2. If τ2 is the rotation by π about the center of B, so that τ2(a) = b, τ2(b) = a,
then (37) is the image of (36) under τ2.

Proof. The proof is simple, but we want to give all details here, since we will use a similar
proof for the case of an ideal triangle later. The first, and easy, step is to show that Ss(B)
is generated by X and the relations (36)-(37) are satisfied. Then, since we know an explicit
R-basis of Ss(S), an upper estimate argument will finish the proof.

Step 1. For each k ∈ N, the set ∂(k) := ∂(α(k)) consists of k points in a and k points
in b. Let St(k) be the set of all states s : ∂(k) → {±}, and St↑(k) ⊂ St(k) be the subset
of all increasing states. For s ∈ St(k) let α(k, s) be the stated ∂B-tangle diagram, which is
α(k) equipped with state s. Similarly, (αk, s) is αk equipped with s. Recall that we have an
increasing filtration {Fm(Ss(B))} of Ss(B) and its associated graded algebra Gr(Ss(B)).
By Proposition 2.12, the set {α(m, s) | s ∈ St↑(m)} is an R-basis of Grm(Ss(B)).

By Lemma 4.3, (αm, s)
•
= α(m, s) (mod Fm−1(Ss(B))), which shows that

Bm := {(αm, s) | s ∈ St↑(m)}
is also an R-basis of Grm(Ss(B)). It follows that {(αk, s) | k ∈ N, s ∈ St↑(k)} is an R-basis
of Ss(B). Since (αk, s) is a monomial in the letters in X, we conclude that X generates
Ss(B) as an R-algebra.

Figure 8. An application of Relation (14)

Let us now prove (36). Apply (14) as in Figure 8, then use (17) to remove the kink; we get

α(ε,−)α(ε′,+) = q2α(ε,+)α(ε′,−) + q−1/2(−q3)Cε
ε′ ,

which is (36). The proof of (37) is similar.
Step 2. Let A be the R-algebra generated by X subject to the relations (36) and (37).

Then A is a filtered R-algebra, where the m-th filtration Fm(A) is spanned by the set of
monomials in X of degree ≤ m. The R-algebra map ω : A → Ss(B) defined by ω(x) = x
for all x ∈ X, is a surjective homomorphism of filtered algebras, and induces an algebra
homomorphism Gr(ω) : Gr(A) → Gr(Ss(B)). The set Mm := {ϑ1 . . . ϑm | ϑj ∈ X} spans
Grm(A). Presenting each ϑj as a stated arc on B, we see that there is state s ∈ St(m) such
that ϑ1 . . . ϑm = (αm, s), and we use this to identify Mm with the set {(αm, s) | s ∈ St(m)}.
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Step 3. Since the second term on the right hand side of (36) has degree less than other
terms, in Gr(A) we have relation (36), with the second term of the right hand side removed:

α(ε,−)α(ε′,+) = q2α(ε,+)α(ε′,−).

There are states r, r′ ∈ St(2) such that the left hand side and the right hand side of the
above are respectively (α2, r) and (α2, r′), and the above relation can be rewritten as

(38) (α2, r) = q2(α2, r′) in Gr(A).

The upshot is that r′ is a simple positive permutation of r, see Figure 8.
Step 4. Let us show that the subset M↑(m) := {(αm, s) | s ∈ St↑(m)} spans Grm(A).

Suppose ϑ1 . . . ϑm = (αm, s) ∈ M(m) with nd(s) > 0. Then there is a consecutive s-
decreasing pair (u, v) ∈ ∂(m)2. Both u, v belong to the same boundary edge, say b. Assume
u is an end point of ϑj, then v must be an end point of ϑj+1. Then ϑjϑj+1 look like in the
left hand side of Figure 8, i.e. ϑjϑj+1 is exactly the left hand side of (36), or the left hand
side of (38). Replacing ϑjϑj+1 by the right hand side of (38), we get

(39) (αm, s)
•
= (αm, s′) (mod Fm−1(A)),

where s′ is a simple positive permutation of s. An induction on nd(s) shows that for any
s ∈ St(m), we have

(40) (αm, s)
•
= (α, s↑) (mod Fm−1(A)),

which, in turns, shows that M↑
m also spans Grm(A).

Both sets M↑
m and Bm are paremeterized by St↑(m) and hence have the same order,

and Gr(ω) maps M↑
m bijectively onto Bm. Since Bm, being an R-basis of Grm(Ss(B)), is

R-linearly independent, M↑
m must be R-linearly independent. Thus, M↑

m is an R-basis of
Grm(A), and Gr(ω) : Grm(A) → Grm(Ss(B)) is an isomorphism. It follows that ω : A →
Ss(B) is an isomorphism. �

The following lemma is used in the proof of Theorem 4.1, and we use notations there.

Lemma 4.3. Suppose D is a stated ∂B-tangle diagram with ∂D = ∂(k) and each component
of D is an arc. Let s ∈ St(k) be the state of D.

(a) If D contains a returning arc, then, as an element in Ss(B), D ∈ Fk−1(Ss(B)).
(b) If D has no returning arcs, then, as elements in Ss(B),

D
•
= α(k, s) (mod Fk−1(Ss(B))).

Figure 9. A returning arc with a double point on it (middle), and two of its resolutions (left

and right)

Proof. (a) If there is no double point on a returning arc, then D ∈ Fk−1(Ss(B)) by rela-
tion (18). Suppose there is a double point on a returning arc. Each of the two smooth
resolutions of this double point contains a returning arc, which has less double points than
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the original returning arc does (see Figure 9). The skein relation and induction show that
D ∈ Fk−1(Ss(B)).

Figure 10. A double point of 2 non-returning arcs (middle) and its two resolutions (left and

right)

(b) If D has no double point, then D = α(k, s). Suppose D has a double point. Of the
two resolutions of the double point, exactly one does not have a returning arc; see Figure 18.
By the skein relation, part (a), and induction, we have D

•
= α(k, s) (mod Fk−1). �

Proposition 4.4. Suppose R is a domain. Then Ss(B) is a domain.

Proof. We say an R-basis {bi | i ∈ I} of an R-algebra A is compatibly ordered, if I is a
monoid equipped with a total order such that if i ≤ i′ and j ≤ j′ then i + j ≤ i′ + j′, and
bibj

•
= bi+j. We first prove the following lemma.

Lemma 4.5. Suppose R is a commutative domain and an R-algebra A has a compatibly
ordered basis. Then A is a domain.

Proof. Suppose x ∈ A is non-zero. Then x =
∑

i xibi ∈ A, with ci ∈ R. The leading term
lt(x) is defined to be cjbj, where j is the largest index such that cj 6= 0. Suppose y 6= 0 and

lt(y) = c′lbl. From the assumptions lt(xy)
•
= cjc

′
lbj+l 6= 0. �

Return to the proof of the proposition. Let I ⊂ N3 be the set of all k = (k, ka, kb) ∈ N3

such that ka, kb ≤ k. For k ∈ I define bk = (αk, s), where s ∈ St↑(k) is the only increasing
state which has ka pluses on edge a and kb pluses on edge b. Then {bk | k ∈ I} is an R-basis
of Ss(B). Order I lexicographically. Lemma 4.3 shows that

(41) z(k)z(k′)
•
= z(k + k′) in Gr(Ss(B)).

In other words, {bk | k ∈ Q} is a compatibly ordered basis of Gr(Ss(B)). By Lemma 4.5,
Gr(Ss(B)) is a domain. Hence, Ss(B) is a domain. �

4.3. Ideal triangle. Let T be an ideal triangle, with boundary edges a, b, c and arcs α, β, γ
in counterclockwise order, as in Figure 11.

Figure 11. Ideal triangle T (left), with arcs α, β, γ (middle), and α(+−) (right).
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Let τ be the counterclockwise rotation by 2π/3, so that τ(T) = T and τ gives the cyclic
permutation a→ b→ c→ a and α→ β → γ → α. For ε, ε′ ∈ {±}, let α(ε, ε′) be α with the
state s given by s(α∩c) = ε, s(α∩b) = ε′. Let β(ε, ε′) = τ(α(ε, ε′)) and γ(ε, ε′) = τ 2(α(ε, ε′)).
Note that τ defines an automorphism of the algebra Ss(T).

Theorem 4.6. Suppose T is an ideal triangle, with the above notations. Then Ss(T) is the
R-algebra generated by the set of twelve generators

X = {α(ε, ε′), β(ε, ε′), γ(ε, ε′) | ε, ε′ ∈ {±}}

subject to the the following relations and their images under τ and τ 2:

β(µ, ε)α(µ′, ε′) = qα(ε, ε′) β(µ, µ′)− q2Cε
µ′ γ(ε′, µ)(42)

α(−, ε)α(+, ε′) = q2α(+, ε)α(−, ε′)− q5/2Cε
ε′(43)

α(ε,−)α(ε′,+) = q2α(ε,+)α(ε′,−)− q5/2Cε
ε′(44)

α(−, ε) β(ε′,+) = q2α(+, ε) β(ε′,−)− q5/2γ(ε, ε′)(45)

α(ε,−) γ(+, ε′) = q2α(ε,+) γ(−, ε′) + q−1/2β(ε′, ε).(46)

Proof. First we show that X generates Ss(T) and all the relations (42)–(46) are satisfied.
Then an upper bound estimate argument will finish the proof. Throughout the proof, the

Figure 12. Diagrams of α2, βγ, and γβ

order of each ∂T-diagram is positive. For example, the diagrams of α2, βγ, and γβ are
depicted in Figure 12.

Step 1. Let us show that X generates Ss(T). For k = (k1, k2, k3) ∈ N3 let |k| :=
k1 + k2 + k3. Let θ(k) be the simple ∂T-tangle diagram which consists of k1 parallels of α,
k2 parallels of β, and k3 parallels of γ, and θk = αk1βk2γk3 , see Figure 13.

Figure 13. Diagram θ(2, 3, 1) (left) and diagram α2β3γ (right)

The set ∂(k) := ∂(θ(k)) = ∂(θk), considered up to isotopy of T, consists of k2 + k3

points on a, k1 + k3 points on b, and k1 + k2 points on c. Let St(k) be the set of all states
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s : ∂(k)→ {±}, and St↑(k) ⊂ St(k) be the subset of all increasing states. For s ∈ St(k) let
θ(k, s) be θ(k) with state s. Similarly, (θk, s) is θk with state s. By Proposition 2.12,

Bm := {θ(k, s) | k ∈ N3, |k| = m, s ∈ St↑(k)}
is an R-basis of Grm(Ss(T)). By Lemma 4.7,

θ(k, s)
•
= (θk, s) (mod F|k|−1(Ss(T))),

which implies that {(θk, s) | k ∈ N3, s ∈ St↑(k)} is also an R-basis of Ss(T). Since each
(θk, s) is a monomial in X, X generates Ss(T).

Figure 14. Proof of Identity (47)

Let now prove all the relations (42)–(46) are satisfied. Consider (42). Using the skein
relation as in Figure 14, we have

(47) α(ε, ε′)β(µ, µ′) = qCε
µ′γ(ε′, µ) + q−1β(µ, ε)α(µ′, ε′),

which proves (42).

Figure 15. Proof of Identity (48)

Now prove (43). Using Relation (14) as in Figure 15 and then (17), we have

(48) α(−, ε)α(+, ε′) = q2α(+, ε)α(−, ε′) + q−1/2(−q3)Cε
ε′ ,

which proves (43). The proof of (44)–(46) is similar.
Step 2. Let A be the R-algebra generated by X subject to the relations (42)–(46). Then

A is a filtered R-algebra where the m-th filtration Fm(A) is spanned by the set of monomials
in X of degree ≤ m. The R-algebra map ω : A→ Ss(B), defined by ω(x) = x for all x ∈ X,
is a surjective homomorphism of filtered algebras, and induces an algebra homomorphism

Gr(ω) : Gr(A)→ Gr(Ss(B)).

The set Mm := {ϑ1 . . . ϑm | ϑj ∈ X} spans Grm(A). If αi ∈ {α, β, γ} is ϑi without state,
then by presenting each ϑj as a stated arc on B, there is a state s : ∂(α1 . . . αm)→ {±} such
that ϑ1 . . . ϑm = (α1 . . . αm, s). Thus, we can identity

Mm = {(α1 . . . αm, s) | αi ∈ {α, β, γ}, s : ∂(α1 . . . αm)→ {±}}.
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Step 3. Let us now show that the subset ~Mm ⊂Mm, defined by

~Mm := {(θk, s) | |k| = m, s ∈ St(k)},
spans Grm(A). Ignoring the second term of the right hand side of Relation (42) which is of
less degree, we get that for any state r of αβ,

(49) (βα, r) = q(αβ, r) in Gr(A).

Here (αβ, r) (resp. (βα, r) is the diagram αβ (resp. βα) with state r. Together with its
images under τ and τ 2, (49) shows that for any permutation σ of {1, . . . ,m},

(50) (α1 . . . αm, s)
•
= (ασ(1) . . . ασ(m), s) in Gr(A).

In particular, if the numbers of α, β, γ among α1, . . . , αm are components of k = (k1, k2, k3),

then (α1 . . . αm, s)
•
= (θk, s). This shows the subset ~Mm also spans Grm(A).

Step 4. Let us show that the subset ~M↑
m ⊂ ~Mm, defined by

~M↑
m := {(θk, s) | |k| = m, s ∈ St↑(k)},

spans Grm(A). First we make the following observation. Suppose ϑ1ϑ2 is the left hand side
of one of (43)–(46), and ϑ̄i ∈ {α, β, γ} is ϑi without states. There is a state r ∈ St(ϑ̄1ϑ̄2)
such that ϑ1ϑ2 = (ϑ̄1ϑ̄2, r), and (43)–(46), ignoring the second term of the right hand side,
give

(51) (ϑ̄1ϑ̄2, r) = q2(ϑ̄1ϑ̄2, r
′) in Gr(A),

where r′ is a simple positive permutation of r.
Now assume ϑ1 . . . ϑm = (θk, s) ∈ ~Mm with nd(s) > 0. Then there is a consecutive s-

decreasing pair (u, v) ∈ ∂(k)2. Let u be an end point of ϑi and v be an end point of ϑj.
There are two cases: ϑ̄i = ϑ̄j and ϑ̄i 6= ϑ̄j.

Case 1: ϑ̄i = ϑ̄j. Say, ϑ̄i = ϑ̄j = α. Then one has j = i + 1 because u and v are
consecutive. Besides, either u, v ∈ b or u, v ∈ c.

Figure 16. Case 1: we have α(−, ε)α(+, ε′) on the left and α(ε,−)α(ε′,+) on the right

If u, v ∈ b, then ϑ1ϑ2 = α(−, ε)α(+, ε′), the left hand side of (43) (see Figure 16); and if
x1, x2 ∈ c, then ϑ1ϑ2 = α(ε,−)α(ε′,+), the left hand side of (44). Using (51), we get

(52) (θk, s)
•
= (θk, s′) in Gr(A) for some s′ with nd(s′) < nd(s).

Case 2: ϑ̄i 6= ϑ̄j. There are 3 subcases: (i) u, v ∈ c, (ii) u, v ∈ b, and (iii): u, v ∈ a. See
Figure 17.

Subcase 2(i): u, v ∈ c. In this case one has j = i+ 1, and ϑiϑi+1 = α(−, ε)β(ε′,+), which
is the left hand side of (43) (see Figure 17). Again, using (51), we get (52).

Subcase 2(iii) is similar. Actually applying the rotation τ , one gets subcase 2(iii) from 2(i).
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Figure 17. Case 2: From left to right we have α(−, ε)β(ε′,+), α(ε,−)γ(+, ε′), and

β(− ε)γ(ε′,+)

Subcase 2(ii): u, v ∈ b. Then ϑiϑj = α(ε,−)γ(+, ε′), the left hand side of (46), see
Figure 17. But we might not have j = i + 1. We only have i = k1 and j = k1 + k2 + 1, so
that ϑ̄i is the last α and ϑ̄j is the first γ in the product θk = αk1βk2γk3 . However, we can
bring ϑ̄i next to ϑ̄j using (50): In Gr(A) we have

(θk, s) = (αk1βk2γk3 , s)
•
= (αk1−1βk2(αγ)γk3−1, s)

•
= (αk1−1βk2(αγ)γk3−1, s′)

•
= (θk, s′),

for some state s′ with nd(s′) < nd(s). Here the second and the last identities are (50), and
the third identity follows from (51).

Thus, in all cases we always have (52). An induction shows that for all (θk, s) ∈ ~Mm,

(53) (θk, s)
•
= (θk, s↑) in Gr(A).

This shows ~M↑
m also spans Grm(A).

Step 5. Note that | ~M↑
m| = |Bm|, since both are paremeterized by

⋃
|k|=m St↑(k), and

Gr(ω) maps ~M↑
m bijectively onto Bm. Since Bm is an R-basis of Grm(Ss(T)), the set ~M↑

m

is R-linearly independent. Thus, ~M↑
m is an R-basis of Grm(A), and Gr(ω) : Grm(A) →

Grm(Ss(T)) is an isomorphism. It follows that ω : A→ Ss(B) is an isomorphism. �

The following lemma is used in the proof of Theorem 4.6, and we use notations there.

Lemma 4.7. Suppose D is a stated ∂T-tangle diagram with ∂D = ∂(k) and each component
of D is an arc. Let s ∈ St(k) be the state of D.

(a) If D contains a returning arc, i.e. an arc whose two ends are in one edge of T, then
D, as an element of Ss(T), is F|k|−1.

(b) If D has no returning ars, then, as elements in Ss(T),

D
•
= θ(k, s) (mod F|k|−1).

Proof. (a) The proof of Lemma 4.3(a) works also for this case.
(b) If D has no double point, then D = θ(k, s). Suppose D has a double point. Of the

two resolutions of the double point, exactly one does not have a returning arc; see Figure 18.
By the skein relation, part (a), and induction, we have D

•
= θ(k, s) (mod F|k|−1). �

Proposition 4.8. Suppose R is a domain. Then Ss(T) is a domain. More over, if F̃ is a
collection of ideal triangles, then

⊗
T∈F̃ Ss(T) is a domain.

Proof. For k = (k1, k2, k3, ka, kb, kc) ∈ I, where

I := {(k1, k2, k3, ka, kb, kc) ∈ N6 | ka ≤ k2 + k3, kb ≤ k1 + k3, kc ≤ k1 + k2},
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Figure 18. There are two types of double points (up to isotopies and rotations); in each case

the only resolution without returning arc is drawn. Other resolutions have returning arcs

define bk = (αk1βk2γk3 , s), where s ∈ St↑(k) is the only increasing state such that there are
ka pluses on edge a, kb pluses on edge b, and kc pluses on edge c. Then {bk | k ∈ I} is an
R-basis of Gr(Ss(T)). We order I using the lexicographic order. Lemma 4.7 shows that

(54) z(k)z(k′)
•
= z(k + k′) in Gr(Ss(T)).

Lemma 4.5 shows that Gr(Ss(T)) is a domain. Hence Ss(T) is a domain.
By combining the above basis of Ss(T), with the lexicographic order, we get a compatibly

ordered basis of
⊗

T∈F̃ Ss(T). Hence
⊗

T∈F̃ Ss(T) is a domain. �

4.4. Zero-divisor. Proof of Theorem 2.

Proof. If ∂S is a closed manifold, then Ss(S) = S̊ (S), and the result is well-known and
was proved in [PS2]. Assume ∂S 6= ∅. There are only a few simple cases when S is not
triangulable, listed in (i)–(iv) below. In each case, S = S \ P .

(i) S = S2, |P| = 1. Then Ss(S) = S̊ (S) = R, which is domain.

(ii) S = S2, |P| = 2. Then Ss(S) = S̊ (S) = R[x], which is a domain. Here x is the
only non-trivial simple loop in S.

(iii) S is a disk and |P| = 1. Then Ss(S) = R, a domain.
(iv) S is an ideal bigon. Then Ss(S) is a domain by Proposition 4.4.
Now suppose S has an ideal triangulation. By the triangular decomposition, Ss(S)

embeds into
⊗

T∈F̃ Ss(T), which is a domain by Proposition 4.8. It follows that Ss(S) is a
domain. �

Remark 4.9. Besides the case when ∂S is a closed manifold, when ∂S = ∅, we also have
Ss(S) = S̊ (S), and the fact that S̊ (S) is a domain was known before, see [PS2, BW1, CM].
Our proof in these special cases is different from those in [PS2, BW1, CM]. Later we will
show that the Muller skein algebra embeds into Ss(S), hence it is also a domain, a fact
proven by Muller before using another method [Mu].

Remark 4.10. Suppose R = C, q = −1, and S is a triangulated punctured bordered
surfaced with a triangulation ∆. Then S̊ (S) is canonically isomorphic to the ring of regular
functions on the SL2(C)-character variety of π1(S). The triangular decomosition shows

there is a natural embedding of the commutative ring S̊ (S) into
⊗

T∈F̃ Ss(T), which is non-
commutative. Even in this case of q = −1, the ring Ss(T) and the triangular decomposition
seem new.
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5. Chekhov-Fock algebra and quantum trace

5.1. Chekhov-Fock triangle algebra, Weyl normalization. Suppose T is an ideal tri-
angle with boundary edges a, b, c and arcs α, β, γ as in Figure 11. Define Y(T) to be the
R-algebra

Y(T) = R〈y±1
a , y±1

b , y±1
c 〉/(yayb = q ybya, ybyc = q ycyb, ycya = q ycya).

Then Y(T) belongs to a type of algebras called quantum tori, see eg. [Le2, Section 2].
Suppose x, y are elements of an R-algebra such that xy = qkyx, where k ∈ Z. Define the

Weyl normalization of xy by

[xy] := q−k/2xy = qk/2yx.

The advantage is that [xy] = [yx]. For example, for yb, ycc ∈ Y(T) and ε, ε′ ∈ {±1}, we
have

(55) [(yc)
ε(yb)

ε′ ] = qεε
′/2(yc)

ε(yb)
ε′ .

The rotation τ : T → T, which gives the cyclic permutations α → β → γ → α and
a→ b→ c→ a, induces algebra automorphisms of the algebras Ss(T) and Y(T).

Proposition 5.1. There exists a unique R-algebra homomorphism φ : Ss(T)→ Y(T) which
is τ -equivariant and satisfies

φ(α(εε′)) =

{
0 if ε = −, ε′ = +

[cεbε
′
] otherwise.

(56)

Proof. The proof follows from an easy checking that the definition (56) respects all the
defining relations of Ss(T) described in Proposition 4.6. �

5.2. Quantum trace. Let ∆ be a triangulation of a punctured bordered surface S and
F̃ = F̃(∆) be the collection of disjoint ideal triangles obtained by splitting S along the
edges of ∆, see Section 3.3. Let E be the set of all edges of ∆, and Ẽ be the set of all edges
of all triangles in F̃ .

Using the triangular decomposition (33) and the algebra map φ of Section 5.1, define κ∆

as the composition

κ∆ : Ss
ρ∆−→

⊗
T∈F̃(∆)

Ss(T)
⊗φ−→ Y(F̃) :=

⊗
T∈F̃(∆)

Y(T).

Bonahon and Wong [BW1] constructed an algebra homomorphism (quantum trace map)

Tr∆ : Ŝs(S)→ Y(∆),

where Y(∆), a version of the Chekhov-Fock algebra, is an R-subalgebra of Y(F̃). For now,
we consider Tr∆ as a map with target Y(F̃). We recall the definition of Y(∆) in Section 5.3.

Theorem 5.2. If ∆ is an ideal triangulation of a punctured bordered surface S, then the

composition κ̂∆ : Ŝs(S)→ Ss(S)
κ∆−→ Y(F̃) is equal to the quantum trace map of Bonahon

and Wong.
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Proof. (i) The case S = T, an ideal triangle with notations of Figure 11. In this case Ŝs(T)
is generated by α(ε, ε′), the arcs δ(ε, ε′), and their images under τ, τ 2. Here δ(ε, ε′) is a
returning arc with states ε, ε′. For each of these generators, the image of Tr∆ described in
[BW1, Theorem 11] is exactly the image of κ∆ given by (18) and (56). Hence κ̂∆ = Tr∆.

(ii) Now return to the case of general punctured surfaces. Suppose e1, e2 are edges of S
and S′ = S/(e1 = e2). Then S′ inherits a triangulation ∆′ from ∆, where the set E ′ of
edges of ∆′ is the same as E , except that the two edges e1, e2 of E are glued together, giving
an edge e of E ′. Both S and S′ are obtained from the same collection F̃ of ideal triangles
by identifications of edges, with S′ having one more identification.

By [BW1, Theorem 11], Tr∆ is uniquely characterized by its values for ideal triangles
and the following condition: For any such pair S,S′ and any stated ∂S′-tangle α vertically
transverse to e,

(57) tr∆′(α) =
∑
β

Tr∆(β),

where β runs the set of all lifts of α, see Section 3.1. The sequence of maps

Ss(S
′)

ρ−→ Ss(S)
ρ∆−→

⊗
T∈F̃(∆)

Ss(T)
⊗φ−→ Y(F̃)

shows that κ∆′ = κ∆ ◦ ρ. Hence, from the definition of ρ, we have

κ̂∆′(α) =
∑
β

κ̂∆(β),

i.e. κ̂∆ also satisfies the above condition (57). This proves κ̂∆ = Tr∆. �

We have seen that the triangular decomposition (33) gives a simple proof of the existence
of the quantum trace map of Bonahon and Wong [BW1]. Because there is no analog of ρ

relating Ŝs(S
′) and Ŝs(S), in [BW1] the quantum trace map has to be defined directly

on Ŝs(S
′), and the proof of well-definedness involves difficult calculations. For yet another

proof of the existence of the quantum trace map, the reader can consult [Le2].

5.3. Chekhov-Fock algebra. We continue with the notation of the previous subsection.
For each T ∈ F̃ we consider Y(T) as a subalgebra of Y(F̃) =

⊗
T∈F̃(∆) Y(T) under the

natural embedding. Then Y(F̃) is the R-algebra generated by y±1
e with e ∈ Ẽ , subject to

the relation ye1ye2 = ye2ye1 if e1 and e2 are edges of different triangles, and ye1ye2 = qye2ye1
if e2 and e1 are edges of a triangle and e2 follows e1 in counterclockwise order.

Under the natural projection pr : Ẽ → E = E(∆), an edge e ∈ E has one or two pre-images
in Ẽ ; each is called a lift of e. For each e ∈ E define ya ∈ Y(F̃) by

• If e has a unique lift e′ ∈ Ẽ , then ye = ye′ .
• If e has two lifts e′, e′′ ∈ Ẽ , then ye = [ye′ye′′ ].

Let Y(∆) be the R-subalgebra of Y(T) generated by y±1
a , a ∈ E . Then Y(∆) is a version

of the (multiplicative) Chekhov-Fock algebra of S associated with the triangulation ∆. In
[BW1], it proved that the image of Tr∆ is in Y(∆), which can also be proved easily from the
definition of κ∆.
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6. Relation with the skein algebra of Muller

6.1. Skein algebra of marked surface. Recall that a marked surface (S,P) consists of
a compact oriented 2-dimensional manifold S with (possibly empty) boundary ∂S and a
finite set P ⊂ ∂S. We recall the definition of the Muller skein algebra [Mu], following [Le2].

Let S = S \ (P ∪ ∂′(S)), where ∂′(S) is the union of all connected components of ∂S
which do not intersect P . Then S is a punctured marked surface.

A P-tangle α is defined just like a ∂S-tangle, only with ∂(α) ⊂ P× (0, 1). More precisely,
a P-tangle α is a compact, framed, properly embedded 1-dimensional non-oriented smooth
submanifold α of S × (0, 1) such that ∂(α) ⊂ P × (0, 1) and at every boundary point of α
the framing is vertical. Two P-tangles are isotopic if they are isotopic through the class of
P-tangles. Define S Muller(S,P) to be the R-module freely spanned by isotopy classes of
P-tangles modulo the skein relation (11), the trivial loop relation (12), and the new trivial
arc relation (see Figure 19).

Figure 19. Trivial arc relation

More precisely, the trivial arc relation says α = 0 for any P-tangle α of the form α = α′ta,
where a ⊂ S× (0, 1)\α′ is an arc with two end points in p× (0, 1) for some p ∈ P , such that
a and the part of p× (0, 1) between the two end points of a co-bound a disk in S× (0, 1)\α′.

As usual, the product of two P-tangles is obtained by stacking the first on top of the
second. With this product, S Muller(S,P) is an R-algebra.

Let Ss,+(S) ⊂ Ss(S) be the R-submodule spanned by stated ∂S-tangles whose states

are all +. For an P-tangle α define a stated ∂S-tangle Ω̃(α) by moving all the boundary
points of α slightly to the left (i.e. along the positive direction of ∂S), keeping the same
height, and equipping Ω̃(α) with state + at every boundary points. Relations (11)–(13) show
that Ω̃ descends to a well-defined R-linear map

Ω : S Muller(S,P)→ Ss,+(S).

Proposition 6.1. The map Ω is an R-algebra isomorphism.

Proof. It is easy to see that Ss,+(S) is the R-module freely spanned by ∂S-tangles with
+ states, subject to those relations from (11)–(14) which involve only + states; namely
relations (11), (12), and the middle relation of (13). Since Ω̃ maps the set of isotopy classes
of P-tangles isomorphically onto the set of isotopy classes of + stated ∂S-tangles, and maps
the defining relations of S Muller(S,P) onto the defining relations of Ss,+(S), it induces an

isomorphism Ω : S Muller(S,P)→ Ss,+(S).

Alternatively, theR-basis of S Muller(S,P), given explicitly in [Mu, Lemma 4.1], is mapped
by Ω to the R-basis of Ss,+(S) given in Theorem 2.8, with all + states. This shows Ω is an
isomorphism. �
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6.2. Proof of Theorem 4.

Proof. Recall that we define the quantum trace map on S Muller(S,P)

κ̄∆ : S Muller(S,P)
Ω−→ Ss,+(S)

κ∆−→ Y(∆).

Number the set E of edges of ∆ so that E = {e1, . . . , en}. For k = (k1, . . . , kn) ∈ Zn let

yk := (ye1)k1(ye2)k2 . . . (yen)kn ∈ Y(∆).

The set {yk | k ∈ Z} is an R-basis of Y(∆). We order all yk using the lexicographic order
of k ∈ Zn, and use this order to define the leading term lt(x) of any 0 6= x ∈ Y(∆).

Let S̃ =
⊔

T∈F̃ T, and pr : S̃ → S be the natural projection. Suppose D is a simple
∂S-tangle diagram which is ∆-normal, i.e. it is e-normal for all edge e of ∆ (see Proof of

Theorem 3.1(b)). Then D̃ := pr−1(D) is a ∂S̃-tangle diagram consisting of non-returning
arcs in ideal triangles in F̃ . Define kD = (kD,1, . . . , kD,n) ∈ Zn, where kD,i = |D ∩ ei|. Then
kD totaly determines the isotopy class of D. Every simple ∂S-tangle diagram is isotopic to
a ∆-normal one.

An edge e of ∆ is interior if it is not a boundary edge of S. Let E̊ be the union of all the
interior edges of ∆. Fix an orientation of E̊ and provide the boundary edges of S with the
positive orientation. Lift these orientations to edges of Ẽ , and get an orientation o of ∂S̃.
Suppose D is a positively ordered, ∆-normal, simple ∂S-tangle diagram, with + states. For
every map r : D ∩ E̊ → {±}, let D̃(r) be D̃ with o-order, and states defined by the lift of r

on E̊ and + on all other edges. From the definition, we have the following state sum

(58) κ∆(D) =
∑

r:D∩E̊→{±}

φ(D̃(r)).

Let r+ be the map r+ : D ∩ E̊ → {+}. Since D̃(r+) consists of non-returning arcs with +
states, (56) and Lemma 4.7 show that φ(D̃(r+)) is non-zero and

lt(φ(D̃(r+)))
•
= ykD .

More over (56) and Lemma 4.7 show that the leading term of any φ(D̃(r)), with r 6= r+, is
smaller than that of φ(D̃(r+)). Hence

(59) lt(κ∆(D))
•
= ykD .

From here it is easy to see that the image under κ∆ of a non-trivial linear combination of +
stated, positively ordered, ∆-normal, simple ∂S-tangle diagrams is non-zero, which proves
that κ̄∆ is injective. �
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[Vo] A. A. Voronov, Lecture notes. Available at http://www.math.umn.edu/~voronov/18.276/lec5/

lec5.pdf

School of Mathematics, 686 Cherry Street, Georgia Tech, Atlanta, GA 30332, USA
Email address: letu@math.gatech.edu


