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Abstract Given a rational homology 3-sphere M with |H1(M,Z)| = b and
a link L inside M , colored by odd numbers, we construct a unified invariant
IM,L belonging to a modification of the Habiro ring where b is inverted. Our
unified invariant dominates the whole set of the SO(3) Witten–Reshetikhin–
Turaev invariants of the pair (M,L). If b = 1 and L = ∅, IM coincides with
Habiro’s invariant of integral homology 3-spheres. For b > 1, the unified in-
variant defined by the third author is determined by IM . Important applica-
tions are the new Ohtsuki series (perturbative expansions of IM ) dominating
quantum SO(3) invariants at roots of unity whose order is not a power of a
prime. These series are not known to be determined by the LMO invariant.

1 Introduction

1.1 Background

In the 25 years after the discovery of the Jones polynomial, knot theory ex-
perienced the transformation from an esoteric branch of pure mathematics
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to a modern dynamic research field with deep connections to mathematical
physics, the theory of integrable and dynamic systems, von Neumann alge-
bras, representation theory, homological algebra, algebraic geometry, etc. The
main stones of this development were constructions of the finite type invari-
ants, Kontsevich integral and Khovanov homology.

By the Kirby theorem, closed compact orientable 3-manifolds are in bi-
jection with framed links modulo two Kirby moves. This rises the question
whether the recent achievements in knot theory can be lifted to the theory of
3-manifolds. This paper is a step towards this goal.

The lift of the (colored) Jones polynomial is given by the Witten–
Reshetikhin–Turaev (WRT) invariant which associates with any closed ori-
ented 3-manifold, a semi-simple Lie algebra and a root of unity a complex
number [28]. The Kontsevich integral was extended to 3-manifolds by the
third author, Murakami and Ohtsuki and is known as LMO invariant [18].
The relationship between LMO and WRT invariants was known only in the
case when the 3-manifold is a rational homology sphere and the order of the
root of unity is a prime number bigger than the order of the torsion group. In
this case the perturbative expansion of the WRT invariants given by the Oht-
suki series [25] coincides, on one side, with the LMO composed with the sl2
weight system and, on the other side, is determined modulo a big prime p by
the WRT invariant at a p-th root of unity. In the 13 years after Ohtsuki’s work
was published, no perturbative expansion of WRT invariants at not prime
roots of unity was constructed. This is because Ohtsuki’s techniques heavily
rely on the fact that the order of the root is prime and can not be extended to
other roots.

Also the related question of integrality for the WRT invariants, though in-
tensively studied (see [6, 21, 23] and the references therein), was accessible
for prime roots of unity only. Note that a conceptual solution of the integrality
problem is of primary importance for any attempt of categorification of the
WRT invariants (compare [10]).

In this paper, the theory of perturbative 3-manifold invariants finds its
incarnation. For any rational homology 3-sphere M , with |H1(M,Z)| = b,
we construct series of perturbative invariants dominating WRT invariants of
M at all roots of unity. More precisely, let us fix a divisor c of b and put
ec := exp(2πI/c), then our power series in (q − ec) with coefficients in
Z[1/b][ec] dominates the WRT invariants at roots of unity whose order has
the greatest common divisor c with b. It is a challenging open problem to
decide whether all these new perturbative invariants can be extracted from
LMO or capture more information from the Chern–Simons theory than just
the contribution of flat connections.

The way to the new Ohtsuki series goes through the unification of WRT
invariants. This approach led already to the full solution of the integrality
problem for quantum SO(3) invariants in [3]. There the first and the third
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authors showed that τM(ξ) ∈ Z[ξ ] for any 3-manifold M and any root of
unity ξ of odd order. By τM(ξ) we mean here the SO(3) version of the WRT
invariant introduced by Kirby and Melvin [12] for roots of unity ξ of odd
order only.

The unification of WRT invariants was initiated in 2006 by Habiro. For
any integral homology 3-sphere M , Habiro [7] constructed a unified invariant
JM whose evaluation at any root of unity coincides with the value of the
WRT invariant at that root. Habiro’s unified invariant JM is an element of the
following ring (Habiro’s ring)

̂Z[q] := lim←−−
k

Z[q]
((q;q)k)

, where (q;q)k =
k
∏

j=1

(1 − qj ).

Every element f (q) ∈ ̂Z[q] can be written as an infinite sum

f (q) =
∑

k≥0

fk(q) (1 − q)(1 − q2) · · · (1 − qk),

with fk(q) ∈ Z[q]. When q = ξ , a root of unity, only a finite number of terms
on the right hand side are not zero, hence the evaluation evξ (f (q)) is well-
defined and is an algebraic integer.

The Habiro ring has beautiful arithmetic properties. Every element f (q) ∈
̂Z[q] can be considered as a function whose domain is the set of roots of
unity. Moreover, there is a natural Taylor series for f at every root of unity.
Two elements f,g ∈ ̂Z[q] are the same if and only if their Taylor series at
a root of unity coincide. In addition, each function f (q) ∈ ̂Z[q] is totally
determined by its values at, say, infinitely many roots of order 3n, n ∈ N. Due
to these properties the Habiro ring is also called a ring of “analytic functions at
roots of unity”. Thus belonging to ̂Z[q] means that the collection of the WRT
invariants is far from a random collection of algebraic integers; together they
form a nice function.

General properties of the Habiro ring imply that for any integral homology
3-sphere M , the Taylor expansion of the unified invariant JM at q = 1 coin-
cides with the Ohtsuki series and dominates WRT invariants of M at all roots
of unity (not only of prime order).

Recently, Habiro ring found an application in analytic geometry for con-
structing varieties over the non-existing field of one element [20].

In this paper, we give a full generalization of the Habiro theory to ratio-
nal homology 3-spheres. This requires the use of completely new techniques
coming from number theory, commutative algebra, quantum group and knot
theory. Let us explain this in more details.

Assume M is a rational homology 3-sphere with |H1(M,Z)| = b. Then
our unified invariant IM belongs to a modification of a Habiro ring where
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b is inverted. Unlike the case b = 1, the modified Habiro ring is not an in-
tegral domain, but a product of different subrings, where each factor is de-
termined by its proper Taylor expansion at some root of unity. In particular,
IM =∏c|b IM,c, where IM,c dominates {τM(ξ)|(ord(ξ), b) = c}. The unified
invariant constructed in [14] can be identified with IM,1. We develop a gen-
eral theory of such cyclotomic completions. The main breakthrough here is
the construction of the b-th root of q in our modified Habiro ring.

This is important, since we use the Laplace transform method [2, 14], to
eliminate the dependence of τM on ξ . The image of the Laplace transform
contains the b-th root of q . Furthermore, to show that the image of the Laplace
transform belongs to our ring we apply a difficult number-theoretic identity
of Andrews [1], generalizing those of Rogers–Ramanujan.

Another challenging problem we had to solve is the following. In all pre-
vious constructions, the existence of IM relies on a deep result of Habiro
about cyclotomic integrality of the Jones polynomial of an algebraically split
link. To diagonalize the linking matrix for a given surgery presentation of
a 3-manifold, the usual trick consists of adding lens spaces and using mul-
tiplicativity of WRT invariants with respect to the connected sum (compare
[25] or [14]). It does not work in our case, since if the order of the root of
unity and b are not coprime, the invariants of lens spaces are often zero. The
solution was to add links to lens spaces and to generalize Habiro’s integrality
result to algebraically split links together with arbitrary odd colored compo-
nents. To do so, we had to use the whole machinery for universal invariants
of bottom tangles developed in [8].

Assume M is the integral homology 3-sphere obtained by framing 1
surgery on the figure 8 knot. Then

IM = q

1 − q

∞
∑

k=0

(−1)kq−(k+1)2
(1 − qk+1)(1 − qk+2) · · · (1 − q2k+1).

We expect that the categorification of WRT invariants will led to a homology
theory with Euler characteristic given by IM .

1.2 Results

The WRT or quantum SO(3) invariant τM,L(ξ) is defined for a pair of a closed
3-manifold M and a link L in it, with link components colored by integers.
Here ξ is a root of unity of odd order. We will recall the definitions in Sect. 2.

Suppose M is a rational homology 3-sphere, i.e. |H1(M,Z)| :=
cardH1(M,Z) < ∞. There is a unique decomposition H1(M,Z) =
⊕

i Z/biZ, where each bi is a prime power. We renormalize the SO(3) WRT
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invariant of the pair (M,L) as follows:

τ ′
M,L(ξ) = τM,L(ξ)

∏

i τL(bi ,1)(ξ)
, (1)

where L(b, a) denotes the (b, a) lens space. We will see that τL(b,1)(ξ) is
always nonzero.

For any positive integer b, we define the cyclotomic completion ring Rb to
be

Rb := lim←−−
k

Z[1/b][q]
((q;q2)k)

, where (q;q2)k = (1 − q)(1 − q3) · · · (1 − q2k−1).

(2)
For any f (q) ∈ Rb and a root of unity ξ of odd order, the evaluation
evξ (f (q)) := f (ξ) is well-defined. Similarly, we put

Sb := lim←−−
k

Z[1/b][q]
((q;q)k)

.

Here the evaluation at any root of unity is well-defined. For odd b, there is a
natural embedding Sb → Rb, see Sect. 4.

Let us denote by Mb the set of rational homology 3-spheres such that
|H1(M,Z)| divides bn for some n. The main result of this paper is the fol-
lowing.

Theorem 1 Suppose the components of a framed oriented link L ⊂ M have
odd colors, and M ∈ Mb. Then there exists a unique invariant IM,L ∈ Rb,
such that for any root of unity ξ of odd order

evξ (IM,L) = τ ′
M,L(ξ).

In addition, if b is odd, then IM,L ∈ Sb.

If b = 1 and L is the empty link, IM coincides with Habiro’s unified in-
variant JM .

The proof of Theorem 1 uses the Laplace transform method and Andrew’s
identity. The new ingredients are

• Frobenius theory for cyclotomic completions of polynomial rings;
• computation of WRT invariants for lens spaces with links inside at all roots

of unity;
• generalization of Habiro’s integrality result to algebraically split bottom

tangles with odd colored closed components.

These new techniques could be of separate interest for analytic geometry
(compare [20]), quantum topology and representation theory.
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The rings Rb and Sb have properties similar to those of the Habiro ring.
An element f (q) ∈ Rb is totally determined by the values at many infinite
sets of roots of unity (see Sect. 4), one special case is the following.

Proposition 2 Let p be an odd prime not dividing b and T the set of all
integers of the form pkb′ with k ∈ N and b′ any odd divisor of bn for some n.
Any element f (q) ∈ Rb, and hence also {τM(ξ)}, is totally determined by the
values at roots of unity with orders in T .

Furthermore, any element of Rb is determined by an infinite collection
of its Taylor expansions at different roots of unity. For example, if b = p

is prime, we will need Taylor expansions at pk-th roots of unity, for k =
0,1,2, . . . . The Ohtsuki series [15, 25], originally defined through some arith-
metic congruence property of the SO(3) invariant, can be identified with the
Taylor expansion of IM at q = 1 [7, 14]. The new power series at say c-th root
of unity dominates {τM(ξ)|(ord(ξ), b) = c} and satisfies congruence relations
similar to the original definition of the Ohtsuki series.

An interesting open problem is to determine whether the coefficients of
these new series are 3-manifold invariants of finite type.

1.3 Plan of the paper

In Sect. 2 we recall known results and definitions. In the next section we ex-
plain the strategy of our proof of Theorem 1. In Sects. 4 and 6, we develop
properties of cyclotomic completions of polynomial rings. New Ohtsuki se-
ries are discussed in Sect. 5. The unified invariant of lens spaces, needed for
the diagonalization, is defined in Sect. 7. The main technical result of the pa-
per based on Andrew’s identity is proved in Sect. 8. The Appendix is devoted
to the proof of the generalization of Habiro’s integrality theorem.

2 Quantum (WRT) invariants

2.1 Notations and conventions

We will consider q1/4 as a free parameter. Let

{n} = qn/2 − q−n/2, {n}! =
n
∏

i=1

{i},

[n] = {n}
{1} ,

[

n

k

]

= {n}!
{k}!{n − k}! .
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We denote the set {1,2,3, . . .} by N. We also use the following notation from
q-calculus:

(x;q)n :=
n
∏

j=1

(1 − xqj−1).

Throughout this paper, ξ will be a primitive root of unity of odd order r and
en := exp(2πI/n).

All 3-manifolds in this paper are supposed to be closed and oriented. Every
link in a 3-manifold is framed, oriented, and has components ordered.

In this paper, L 
 L′ denotes a framed link in S3 with disjoint sublinks L

and L′, with m and l components, respectively. Surgery along the framed link
L transforms (S3,L′) into (M,L′). We use the same notation L′ to denote
the link in S3 and the corresponding one in M .

2.2 The colored Jones polynomial

Suppose L is a framed, oriented link in S3 with m ordered components. For
positive integers n1, . . . , nm, called the colors of L, one can define the quan-
tum invariant JL(n1, . . . , nm) ∈ Z[q±1/4], known as the colored Jones poly-
nomial of L (see e.g. [22, 28]). Let us recall here a few well-known formulas.
For the unknot U with 0 framing one has

JU(n) = [n]. (3)

If L1 is obtained from L by increasing the framing of the ith component by
1, then

JL1(n1, . . . , nm) = q(n2
i −1)/4JL(n1, . . . , nm). (4)

If all the colors ni are odd, then JL(n1, . . . , nm) ∈ Z[q±1].

2.3 Evaluation and Gauss sums

For each root of unity ξ of odd order r , we define the evaluation map evξ by
replacing q with ξ .

Suppose f (q;n1, . . . , nm) is a function of variables q±1 and integers
n1, . . . , nm. In quantum topology, the following sum plays an important role

∑

n1,...,nm

ξ
f :=

∑

0<ni<2r
ni odd

evξ f (q;n1, . . . , nm)

where in the sum all the ni run over the set of odd numbers between 0 and 2r .
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In particular, the following variation of the Gauss sum

γb(ξ) :=
∑

n

ξ
qb n2−1

4

is well-defined, since for odd n, 4 | n2 − 1. It is known that, for odd r ,
|γb(ξ)| = √

cr is never 0. Here c = (b, r) is the greatest common divisor
of b and r .

2.4 Definition of the WRT invariant

Suppose the components of L′ are colored by fixed integers j1, . . . , jl . Let

FL
L′(ξ) :=
∑

n1,...,nm

ξ

{

JL
L′(n1, . . . , nm, j1, . . . , jl)

m
∏

i=1

[ni]
}

.

An important special case is when L = Ub, the unknot with framing b �= 0,
and L′ = ∅. In that case FUb(ξ) can be calculated using the Gauss sum and is
nonzero, see Sect. 7 below.

Let σ+ (respectively σ−) be the number of positive (negative) eigenvalues
of the linking matrix of L. Then the quantum SO(3) invariant of the pair
(M,L′) is defined by (see e.g. [12, 28])

τM,L′(ξ) = FL
L′(ξ)

(FU+1(ξ))σ+(FU−1(ξ))σ− . (5)

The invariant τM,L′(ξ) is multiplicative with respect to the connected sum.
For example, the SO(3) invariant of the lens space L(b,1), obtained by

surgery along Ub, is

τL(b,1)(ξ) = FUb(ξ)

FU sn(b)(ξ)
, (6)

where sn(b) is the sign of the integer b.
Let us focus on the special case when the linking matrix of L is diagonal,

with b1, b2, . . . , bm on the diagonal. Assume each bi is a power of a prime up
to sign. Then H1(M,Z) =⊕m

i=1 Z/|bi |, and

σ+ = card {i | bi > 0}, σ− = card {i | bi < 0}.
Thus from the definitions (5), (6) and (1) we have

τ ′
M,L′(ξ) =

(

m
∏

i=1

τ ′
L(bi ,1)(ξ)

)

FL
L′(ξ)
∏m

i=1 FUbi (ξ)
, (7)
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with

τ ′
L(bi ,1)(ξ) = τL(bi ,1)(ξ)

τL(|bi |,1)(ξ)
.

2.5 Habiro’s cyclotomic expansion of the colored Jones polynomial

Recall that L and L′ have m and l components, respectively. Let us color L′
by fixed j = (j1, . . . , jl) and vary the colors n = (n1, . . . , nm) of L.

For non-negative integers n, k we define

A(n, k) :=
∏k

i=0(q
n + q−n − qi − q−i )

(1 − q)(qk+1;q)k+1
.

For k = (k1, . . . , km) let

A(n,k) :=
m
∏

j=1

A(nj , kj ).

Note that A(n,k) = 0 if kj ≥ nj for some index j . Also

A(n,0) = q−1JU(n)2.

The colored Jones polynomial JL
L′(n, j), when j is fixed, can be repack-
aged into the invariant CL
L′(k, j) as stated in the following theorem.

Theorem 3 Suppose L
L′ is a link in S3, with L having zero linking matrix.
Assume the components of L′ have fixed odd colors j = (j1, . . . , jl). Then
there are invariants

CL
L′(k, j) ∈ (qk+1;q)k+1

(1 − q)
Z[q±1], where k = max{k1, . . . , km} (8)

such that for every n = (n1, . . . , nm)

JL
L′(n, j)
m
∏

i=1

[ni] =
∑

0≤ki≤ni−1

CL
L′(k, j)A(n,k). (9)

When L′ = ∅, this is Theorem 8.2 in [7]. This generalization, essentially
also due to Habiro, can be proved similarly as in [7]. For completeness we
give a proof in the Appendix. Note that the existence of CL
L′(k, j) as rational
functions in q satisfying (9) is easy to establish. The difficulty here is to show
the integrality of (8).

Since A(n,k) = 0 unless k < n, in the sum on the right hand side of (9)
one can assume that k runs over the set of all m-tuples k with non-negative
integer components. We will use this fact later.
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3 Strategy of the proof of the main theorem

Here we give the proof of Theorem 1 using technical results that will be
proved later.

As before, L 
 L′ is a framed link in S3 with disjoint sublinks L and L′,
with m and l components, respectively. Assume that L′ is colored by fixed
j = (j1, . . . , jl), with ji’s odd. Surgery along the framed link L transforms
(S3,L′) into (M,L′). We will define IM,L′ ∈ Rb, such that

τ ′
M,L′(ξ) = evξ (IM,L′) (10)

for any root of unity ξ of odd order. This unified invariant is multiplicative
with respect to the connected sum.

The following observation is important. By Proposition 2, there is at most
one element f (q) ∈ Rb such that for every root ξ of odd order one has

τ ′
M,L(ξ) = evξ (f (q)).

That is, if we can find such an element, it is unique, and we put IM,L′ := f (q).

3.1 Laplace transform

The following is the main technical result of the paper. A proof will be given
in Sect. 8.

Theorem 4 Suppose b = ±1 or b = ±pl where p is a prime and l is positive.
For any non-negative integer k, there exists an element Qb,k ∈ Rb such that
for every root ξ of odd order one has

∑

n
ξ
qb n2−1

4 A(n, k)

FUb(ξ)
= evξ (Qb,k).

In addition, if b is odd, Qb,k ∈ Sb.

3.2 Definition of the unified invariant: diagonal case

Suppose that the linking number between any two components of L is 0, and
the framing on components of L are bi = ±p

ki

i for i = 1, . . . ,m, where each
pi is prime or 1. Let us denote the link L with all framings switched to zero
by L0.

Using (9), taking into account the framings bi ’s, we have

JL
L′(n, j)
m
∏

i=1

[ni] =
∑

k≥0

CL0
L′(k, j)
m
∏

i=1

qbi
n2
i
−1
4 A(ni, ki).
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By the definition of FL
L′ , we have

FL
L′(ξ) =
∑

k≥0

evξ (CL0
L′(k, j))
m
∏

i=1

∑

ni

ξ
qbi

n2
i
−1
4 A(ni, ki).

From (7) and Theorem 4, we get

τ ′
M,L′(ξ) = evξ

{

m
∏

i=1

IL(bi ,1)

∑

k

CL0
L′(k, j)
m
∏

i=1

Qbi,ki

}

,

where the unified invariant of the lens space IL(bi ,1) ∈ Rb, with evξ (IL(bi ,1)) =
τ ′
L(bi ,1)(ξ), exists by Lemma 6 below. Thus if we define

I(M,L′) :=
m
∏

i=1

IL(bi ,1)

∑

k

CL0
L′(k, j)
m
∏

i=1

Qbi,ki
,

then (10) is satisfied. By Theorem 3, CL0
L′(k, j) is divisible by
(qk+1;q)k+1/(1 − q), which is divisible by (q;q)k , where k = maxki . It
follows that I(M,L′) ∈ Rb. In addition, if b is odd, then I(M,L′) ∈ Sb.

3.3 Diagonalization using lens spaces

The general case reduces to the diagonal case by the well-known trick of
diagonalization using lens spaces. We say that M is diagonal if it can be
obtained from S3 by surgery along a framed link L with diagonal linking
matrix, where the diagonal entries are of the form ±pk with p = 0,1 or a
prime. The following lemma was proved in [14, Proposition 3.2(a)].

Lemma 5 For every rational homology sphere M , there are lens spaces
L(bi, ai) such that the connected sum of M and these lens spaces is diag-
onal. Moreover, each bi is a prime power divisor of |H1(M,Z)|.

To define the unified invariant for a general rational homology sphere M ,
one first adds to M lens spaces to get a diagonal M ′, for which the unified
invariant IM ′ had been defined in Sect. 3.2. Then IM is the quotient of IM ′ by
the unified invariants of the lens spaces. But unlike the simpler case of [14],
the unified invariant of lens spaces are not invertible in general. To overcome
this difficulty we insert knots in lens spaces and split the unified invariant into
different components. This will be explained in the remaining part of this
section.
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3.4 Splitting of the invariant

Suppose p is a prime divisor of b, then it’s clear that Rp ⊂ Rb.
In Sect. 4 we will see that there is a decomposition

Rb = Rp,0
b × Rp,0̄

b ,

with canonical projections π
p

0 : Rb → Rp,0
b and π

p

0̄
: Rb → Rp,0̄

b . If f ∈
Rp,0

b then evξ (f ) can be defined when the order of ξ is coprime with p; and
in this case evξ (g) = evξ (π

p

0 (g)) for every g ∈ Rb.

On the other hand, if f ∈ Rp,0̄
b then evξ (f ) can be defined when the order

of ξ is divisible by p, and one has evξ (g) = evξ (π
p

0̄
(g)) for every g ∈ Rb.

It also follows from the definition that Rp,ε
p ⊂ Rp,ε

b for ε = 0 or 0̄.
For Sb, there exists a completely analogous decomposition. For any odd

divisor p of b, an element x ∈ Rb (or Sb) determines and is totally determined
by the pair (π

p

0 (x),π
p

0̄
(x)). If p = 2 divides b, then for any x ∈ Rb, x =

π
p

0 (x).

Hence, to define IM it is enough to fix I 0
M = π

p

0 (IM) and I 0̄
M = π

p

0̄
(IM).

The first part I 0
M = π

p

0 (IM), when b = p, was defined in [14] (up to normal-
ization), where the third author considered the case when the order of roots
of unity is coprime with b. We will give a self-contained definition of I 0

M ,
and show that it is coincident (up to normalization) with the one introduced
in [14].

3.5 Lens spaces

Suppose b, a, d are integers with (b, a) = 1 and b �= 0. Let M(b,a;d) be
the pair of a lens space L(b, a) and a knot K ⊂ L(b, a), colored by d , as
described in Fig. 1.

Among these pairs we want to single out some whose quantum invariants
are invertible.

For ε ∈ {0, 0̄}, let Mε(b, a) := M(b,a;d(ε)), where d(0) := 1 and d(0̄) is
the smallest odd positive integer such that |a|d(0̄) ≡ 1 (mod b). Note that if
|a| = 1, d(0) = d(0̄) = 1.

Fig. 1 The lens space (L(b, a),Kd) is obtained by b/a surgery on the first component of the
Hopf link, the second component is the knot K colored by d
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It is known that if the color of a link component is 1, then the component
can be removed from the link without affecting the value of quantum invari-
ants. Hence

τM(b,a;1) = τL(b,a).

Lemma 6 Suppose b = ±pl is a prime power. For ε ∈ {0, 0̄}, there exists an
invertible invariant I ε

Mε(b,a) ∈ Rp,ε
p such that

τ ′
Mε(b,a)(ξ) = evξ

(

I ε
Mε(b,a)

)

where ε = 0 if the order of ξ is not divisible by p, and ε = 0̄ otherwise.
Moreover, if p is odd, then I ε

Mε(b,a) belongs to and is invertible in S p,ε
p .

A proof of Lemma 6 will be given in Sect. 7.

3.6 Definition of the unified invariant: general case

Now suppose (M,L′) is an arbitrary pair of a rational homology 3-sphere
with a link L′ in it colored by odd numbers j1, . . . , jl . Let L(bi, ai) for i =
1, . . . ,m be the lens spaces of Lemma 5. We use induction on m. If m = 0,
then M is diagonal and IM,L′ has been defined in Sect. 3.2.

Since (M,L′)#M(b1, a1;d) becomes diagonal after adding m − 1 lens
spaces, the unified invariant of (M,L′)#M(b1, a1;d) can be defined by in-
duction, for any odd integer d . In particular, one can define IMε , where
Mε := (M,L′)#Mε(b1, a1). Here ε = 0 or ε = 0̄ and b1 is a power of a prime
p dividing b. It follows that the components π

p
ε (IMε) ∈ Rp,ε

b are defined.
By Lemma 6, I ε

Mε(b1,a1)
is defined and invertible. Now we put

I ε
M,L′ := I ε

Mε · (I ε
Mε(b1,a1)

)−1.

It is easy to see that IM,L′ := (I 0
M,L′, I 0̄

M,L′) satisfies (10). This completes the
construction of IM,L′ . It remains to prove Lemma 6 and Theorem 4.

4 Cyclotomic completions of polynomial rings

In this section we adapt the results of Habiro on cyclotomic completions of
polynomial rings [9] to our rings.
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4.1 On cyclotomic polynomial

Recall that en := exp(2πI/n) and denote by �n(q) the cyclotomic polyno-
mial

�n(q) =
∏

(j,n)=1
0<j<n

(q − e
j
n).

The degree of �n(q) ∈ Z[q] is given by the Euler function ϕ(n). Suppose p

is a prime and n an integer. Then (see e.g. [24])

�n(q
p) =

{

�np(q) if p | n,

�np(q)�n(q) if p � n.
(11)

It follows that �n(q
p) is always divisible by �np(q).

The ideal of Z[q] generated by �n(q) and �m(q) is well-known, see e.g.
[14, Lemma 5.4]:

Lemma 7

(a) If m
n

�= pe for any prime p and any integer e �= 0, then (�n)+ (�m) = (1)

in Z[q].
(b) If m

n
= pe for a prime p and some integer e �= 0, then (�n)+ (�m) = (1)

in Z[1/p][q].
Note that in a commutative ring R, (x) + (y) = (1) if and only if x is

invertible in R/(y). Also (x) + (y) = (1) implies (xk) + (yl) = (1) for any
integers k, l ≥ 1.

4.2 Habiro’s results

Let us summarize some of Habiro’s results on cyclotomic completions of
polynomial rings [9]. Let R be a commutative integral domain of characteris-
tic zero and R[q] the polynomial ring over R. For any S ⊂ N, Habiro defined
the S-cyclotomic completion ring R[q]S as follows:

R[q]S := lim←−−−−−−
f (q)∈�∗

S

R[q]
(f (q))

(12)

where �∗
S denotes the multiplicative set in Z[q] generated by �S = {�n(q) |

n ∈ S} and directed with respect to the divisibility relation.
For example, since the sequence (q;q)n, n ∈ N, is cofinal to �∗

N
, we have

̂Z[q] � Z[q]N. (13)
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Note that if S is finite, then R[q]S is identified with the (
∏

�S)-adic com-
pletion of R[q]. In particular,

R[q]{1} � R[[q − 1]], R[q]{2} � R[[q + 1]].
Suppose S′ ⊂ S, then �∗

S′ ⊂ �∗
S , hence there is a natural map

ρR
S,S′ : R[q]S → R[q]S′

.

Recall important results concerning R[q]S from [9]. Two positive integers
n, n′ are called adjacent if n′/n = pe with a nonzero e ∈ Z and a prime p,
such that the ring R is p-adically separated, i.e.

⋂∞
n=1(p

n) = 0 in R. A set
of positive integers is R-connected if for any two distinct elements n,n′ there
is a sequence n = n1, n2, . . . , nk−1, nk = n′ in the set, such that any two
consecutive numbers of this sequence are adjacent. Theorem 4.1 of [9] says
that if S is R-connected, then for any subset S′ ⊂ S the natural map ρR

S,S′ :
R[q]S ↪→ R[q]S′

is an embedding.
If ζ is a root of unity of order in S, then for every f (q) ∈ R[q]S the eval-

uation evζ (f (q)) ∈ R[ζ ] can be defined by sending q → ζ . For a set 
 of
roots of unity whose orders form a subset T ⊂ S, one defines the evaluation

ev
 : R[q]S →
∏

ζ∈


R[ζ ].

Theorem 6.1 of [9] shows that if R ⊂ Q, S is R-connected, and there exists
n ∈ S that is adjacent to infinitely many elements in T , then ev
 is injective.

4.3 Taylor expansion

Fix a natural number n, then we have

R[q]{n} = lim←−−
k

R[q]
(�k

n(q))
.

Suppose Z ⊂ R ⊂ Q, then the natural algebra homomorphism

h : R[q]
(�k

n(q))
→ R[en][q]

((q − en)k)

is injective, by Proposition 13 below. Taking the inverse limit, we see that
there is a natural injective algebra homomorphism

h : R[q]{n} → R[en][[q − en]].
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Suppose n ∈ S. Combining h and ρS,{n} : R[q]S → R[q]{n}, we get an al-
gebra map

tn : R[q]S → R[en][[q − en]].
If f ∈ R[q]S , then tn(f ) is called the Taylor expansion of f at en.

4.4 Splitting of Sp and evaluation

For every integer a, we put Na := {n ∈ N | (a, n) = 1}.
Suppose p is a prime. Analogously to (13), we have

Sp � Z[1/p][q]N.

Observe that N is not Z[1/p]-connected. In fact one has N =⊔∞
j=0 pj

Np ,

where each pj
Np is Z[1/p]-connected. Let us define

Sp,j := Z[1/p][q]pj
Np .

Note that for every f ∈ Sp , the evaluation evξ (f ) can be defined for every
root ξ of unity. For f ∈ Sp,j , the evaluation evξ (f ) can be defined when ξ is
a root of unity of order in pj

Np .

Proposition 8 For every prime p one has

Sp �
∞
∏

j=0

Sp,j . (14)

Proof Suppose ni ∈ pji Np for i = 1, . . . ,m, with distinct ji’s. Then ni/ns ,
with i �= s, is either not a power of a prime or a non-zero power of p, hence
by Lemma 7 (and the remark right after Lemma 7), for any positive integers
k1, . . . , km, we have

(�ki
ni

) + (�ks
ns

) = (1) in Z[1/p][q].
By the Chinese remainder theorem, we have

Z[1/p][q]
(∏m

i=1 �
ki
ni

)
�

m
∏

i=1

Z[1/p][q]
(�

ki
ni

)
.

Taking the inverse limit, we get (14). �

Let πj : Sp → Sp,j denote the projection onto the j th component in the
above decomposition.
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Lemma 9 Suppose ξ is a root of unity of order r = pj r ′, with (r ′,p) = 1.
Then for any x ∈ Sp , one has

evξ (x) = evξ (πj (x)).

If i �= j then evξ (πi(x)) = 0.

Proof Note that evξ (x) is the image of x under the projection Sp →
Sp/(�r(q)) = Z[1/p][ξ ]. It remains to notice that Sp,i/(�r(q)) = 0 if
i �= j . �

4.5 Splitting of Sb

Suppose p is a prime divisor of b. Let

S p,0
b := Z[1/b][q]Np and S p,0̄

b := Z[1/b][q]pN �
∏

j>0

Z[1/b][q]pj
Np .

We have similarly

Sb = S p,0
b × S p,0̄

b

with canonical projections π
p

0 : Sb → S p,0
b and π

p

0̄
: Sb → S p,0̄

b . Note that

if b = p, then S p,0
p = Sp,0 and S p,0̄

p =∏j>0 Sp,j . As before we set Sb,0 :=
Z[1/b][q]Nb and π0 : Sb → Sb,0.

Suppose f ∈ Sb. If ξ is a root of unity of order coprime with p, then
evξ (f ) = evξ (π

p

0 (f )). Similarly, if the order of ξ is divisible by p, then
evξ (f ) = evξ (π

p

0̄
(f )).

4.6 Properties of the ring Rb

For any b ∈ N, we have

Rb � Z[1/b][q]N2

since the sequence (q;q2)k , k ∈ N, is cofinal to �∗
N2

. Here N2 is the set of all
odd numbers.

Let {pi | i = 1, . . . ,m} be the set of all distinct odd prime divisors of b.
For n = (n1, . . . , nm), a tuple of numbers ni ∈ N, let pn = ∏

i p
ni

i . Let
Sn := pn

N2b. Then N2 =⊔n Sn. Moreover, for a ∈ Sn, a′ ∈ Sn′ , we have
(�a(q),�a′(q)) = (1) in Z[1/b] if n �= n′. In addition, each Sn is Z[1/b]-
connected. An argument similar to that for (14) gives

Rb �
∏

n

Z[1/b][q]Sn .
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In particular, Rpi,0
b := Z[1/b][q]N2pi and Rpi,0̄

b := Z[1/b][q]piN2 for any 1 ≤
i ≤ m. If 2 | b, then R2,0

b coincides with Rb.
Let T be an infinite set of powers of an odd prime not dividing b and let P

be an infinite set of odd primes not dividing b.

Proposition 10 With the above notations, one has the following.

(a) For any l ∈ Sn, the Taylor map tl : Z[1/b][q]Sn → Z[1/b][el][[q − el]]
is injective.

(b) Suppose f,g ∈ Z[1/b][q]Sn such that evξ (f ) = evξ (g) for any root of
unity ξ with ord(ξ) ∈ pnT , then f = g. The same holds true if pnT is
replaced by pnP .

(c) For odd b, the natural homomorphism ρN,N2 : Sb → Rb is injective. If
2 | b, then the natural homomorphism S 2,0

b → Rb is an isomorphism.

Proof (a) Since each Sn is Z[1/b]-connected in Habiro sense, by [9, Theo-
rem 4.1], for any l ∈ Sn

ρS,{l} : Z[1/b][q]Sn → Z[1/b][q]{l} (15)

is injective. Hence tl = h ◦ ρS,{l} is injective too.
(b) Since both sets contain infinitely many numbers adjacent to pn, the

claim follows from Theorem 6.1 in [9].
(c) Note that for odd b

Sb �
∏

n

Z[1/b][q]S′
n

where S′
n := pn

Nb. Further observe that S′
n is Z[1/b]-connected if b is odd.

Then by [9, Theorem 4.1] the map

Z[1/b][q]S′
n ↪→ Z[1/b][q]Sn

is an embedding. If 2 | b, then S 2,0
b := Z[1/b][q]N2 � Rb. �

Assuming Theorem 1, Proposition 10(b) implies Proposition 2.

5 On the Ohtsuki series at roots of unity

The Ohtsuki series was defined for SO(3) invariants by Ohtsuki [25] and ex-
tended to all other Lie algebras by the third author [15, 16].

In the works [15, 16, 25], it was proved that the sequence of quantum
invariants at ep , where p runs through the set of primes, obeys some congru-
ence properties that allow to define uniquely the coefficients of the Ohtsuki



A unified quantum invariant 139

series. The proof of the existence of such congruence relations is difficult. In
[7], Habiro proved that Ohtsuki series coincide with the Taylor expansion of
the unified invariant at q = 1 in the case of integral homology spheres; this
result was generalized to rational homology spheres by the third author [14].

Here, we prove that the sequence of SO(3) invariants at the pr th roots erep ,
where r is a fixed odd number and p runs through the set of primes, obeys
some congruence properties that allow to define uniquely the coefficients of
the “Ohtsuki series” at er , which is coincident with the Taylor expansion at er .

5.1 Extension of Z[1/b][er ]

Fix an odd positive integer r . Assume p is a prime bigger than b and r .
The cyclotomic rings Z[1/b][epr ] and Z[1/b][er ] are extensions of Z[1/b]
of degree ϕ(rp) = ϕ(r)ϕ(p) and ϕ(r), respectively. Hence Z[1/b][epr ] is an
extension of Z[1/b][er ] of degree ϕ(p) = p − 1. Actually, it is easy to see
that for

fp(q) := qp − e
p
r

q − er

,

the map

Z[1/b, er ][q]
(fp(q))

→ Z[1/b][epr ], q �→ eper ,

is an isomorphism. We put x = q − er and get

Z[1/b][epr ] � Z[1/b, er ][x]
(fp(x + er))

. (16)

Note that

fp(x + er) =
p−1
∑

n=0

(

p

n + 1

)

xne
p−n−1
r

is a monic polynomial in x of degree p − 1, and the coefficient of xn in
fp(x + er) is divisible by p if n ≤ p − 2.

5.2 Arithmetic expansion of τ ′
M

Suppose M is a rational homology 3-sphere with |H1(M,Z)| = b. By Theo-
rem 1, for any root of unity ξ of order pr

τ ′
M(ξ) ∈ Z[1/b][epr ] � Z[1/b, er ][x]

(fp(x + er))
.
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Hence we can write

τ ′
M(erep) =

p−2
∑

n=0

ap,nx
n (17)

where ap,n ∈ Z[1/b, er ]. The following proposition shows that the coeffi-
cients ap,n stabilize as p → ∞.

Proposition 11 Suppose M is a rational homology 3-sphere with
|H1(M,Z)| = b, and r is an odd positive integer. For every non-negative
integer n, there exists a unique invariant an = an(M) ∈ Z[1/b, er ] such that
for every prime p > max(b, r), we have

an ≡ ap,n (mod p) in Z[1/b, er ] for 0 ≤ n ≤ p − 2. (18)

Moreover, the formal series
∑

n an(q − er)
n is equal to the Taylor expansion

of the unified invariant IM at er .

Proof The uniqueness of an follows from the easy fact that if a ∈ Z[1/b, er ]
is divisible by infinitely many rational primes p, then a = 0.

Assume Theorem 1 holds. We define an to be the coefficient of (q − er)
n

in the Taylor series of IM at er , and will show that (18) holds true.
Recall that x = q − er . The diagram

Z[ 1
b
][q]N2 −−−→ Z[ 1

b
, er ][q]rN2 −−−→ Z[ 1

b
, er ][[x]]

⏐

⏐

�

q→er ep

⏐

⏐

�
/(fp(q))

⏐

⏐

�
/(fp(x+er ))

Z[ 1
b
][erp] er ep→q−−−−→ Z[ 1

b
,er ][q]

(fp(q))
−−−→ Z[ 1

b
,er ][[x]]

(fp(x+er ))

is commutative. Here the middle and the right vertical maps are the quotient
maps by the corresponding ideals. Note that IM belongs to the upper left
corner ring, its Taylor series is the image in the upper right corner ring, while
the evaluation (17) is in the lower middle ring. Using the commutativity at
the lower right corner ring, we see that

p−2
∑

n=0

ap,nx
n =

∞
∑

n=0

anx
n (mod fp(x + er)) in Z[1/b, er ][[x]].

Since the coefficients of fp(x + er) up to degree p − 2 are divisible by p, we
get the congruence (18). �

Remark 12 Proposition 11, when r = 1, was the main result of Ohtsuki [25],
which leads to the development of the theory of finite type invariant and the
LMO invariant.
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When (r, b) = 1, then Taylor series at er determines and is determined by
the Ohtsuki series. But when, say, r is a divisor of b, a priori the two Taylor
series, one at er and the other at 1, are independent. We suspect that the Taylor
series at er , with r | b, corresponds to a new type of LMO invariant.

6 Frobenius maps

The proof of Theorem 4, and hence of the main theorem, uses the Laplace
transform method. The aim of this section is to show that the image of the
Laplace transform, defined in Sect. 8, belongs to Rb, i.e. that certain roots of
q exist in Rb.

6.1 On the module Z[q]/(�k
n(q))

Since cyclotomic completions are built from modules like Z[q]/(�k
n(q)), we

first consider these modules. Fix n, k ≥ 1. Let

E := Z[q]
(�k

n(q))
, and G := Z[en][x]

(xk)
.

The following is probably well-known.

Proposition 13

(a) Both E and G are free Z-modules of the same rank kϕ(n).
(b) The algebra map h : Z[q] → Z[en][x] defined by

h(q) = en + x

descends to a well-defined algebra homomorphism, also denoted by h,
from E to G. Moreover, the algebra homomorphism h : E → G is injec-
tive.

Proof (a) Since �k
n(q) is a monic polynomial in q of degree kϕ(n), it is clear

that

E = Z[q]/(�k
n(q))

is a free Z-module of rank kϕ(n). Since G = Z[en]⊗Z Z[x]/(xk), we see that
G is free over Z of rank kϕ(n).

(b) To prove that h descends to a map E → G, one needs to verify that
h(�k

n(q)) = 0. Note that

h(�k
n(q)) = �k

n(x + en) =
∏

(j,n)=1

(x + en − e
j
n)

k.
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When j = 1, the factor is xk , which is 0 in Z[en][x]/(xk). Hence h(�k
n(q))

= 0.
Now we prove that h is injective. Let f (q) ∈ Z[q]. Suppose h(f (q)) = 0,

or f (x + en) = 0 in Z[en][x]/(xk). It follows that f (x + en) is divisible
by xk ; or that f (x) is divisible by (x − en)

k . Since f is a polynomial with
coefficients in Z, it follows that f (x) is divisible by all Galois conjugates
(x − e

j
n)

k with (j, n) = 1. Then f is divisible by �k
n(q). In other words,

f = 0 in E = Z[q]/(�k
n(q)). �

6.2 A Frobenius homomorphism

We use E and G of the previous subsection. Suppose b is a positive integer
coprime with n. If ξ is a primitive nth root of 1, i.e. �n(ξ) = 0, then ξb is also
a primitive nth root of 1, i.e. �n(ξ

b) = 0. It follows that �n(q
b) is divisible

by �n(q).
Therefore the algebra map Fb : Z[q] → Z[q], defined by Fb(q) = qb, de-

scends to a well-defined algebra map, also denoted by Fb, from E to E. We
want to understand the image Fb(E).

Proposition 14 The image Fb(E) is a free Z-submodule of E of maxi-
mal rank, i.e. rk(Fb(E)) = rk(E). Moreover, the index of Fb(E) in E is
bk(k−1)ϕ(n)/2.

Proof Using Proposition 13 we identify E with its image h(E) in G.
Let F̃b : G → G be the Z-algebra homomorphism defined by F̃b(en) =

eb
n, F̃b(x) = (x + en)

b − eb
n.

Note that F̃b(x) = beb−1
n x + O(x2), hence F̃b(x

k) = 0. It is easy to see
that F̃b is a well-defined algebra homomorphism, and that F̃b restricted to E

is exactly Fb. Since E is a lattice of maximal rank in G ⊗ Q, it follows that
the index of Fb is exactly the determinant of F̃b, acting on G ⊗ Q.

A basis of G is e
j
nx

l , with (j, n) = 1,0 < j < n and j = 0, and 0 ≤ l < k.
Note that

F̃b(e
j
nx

l) = ble
jb
n e(b−1)l

n xl + O(xl+1).

Since (b, n) = 1, the set e
jb
n , with (j, n) = 1 is the same as the set e

j
n, with

(j, n) = 1. Let f1 : G → G be the Z-linear map defined by f1(e
jb
n xl) = e

j
nx

l .
Since f1 permutes the basis elements, its determinant is ±1. Let f2 : G → G

be the Z-linear map defined by f2(e
j
nx

l) = e
j
n(e

1−b
n x)l . The determinant of f2

is again ±1. This is because, for any fixed l, f2 restricts to the automorphism
of Z[en] sending a to es

na, each of these maps has a well-defined inverse:
a �→ e−s

n a. Now

f1f2F̃b(e
j
nx

l) = ble
j
nx

l + O(xl+1)
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can be described by an upper triangular matrix with bl’s on the diagonal; its
determinant is equal to bk(k−1)ϕ(n)/2. �

From the proposition we see that if b is invertible, then the index is equal
to 1, hence we have

Proposition 15 For any n coprime with b and k ∈ N, the Frobenius ho-
momorphism Fb : Z[1/b][q]/(�k

n(q)) → Z[1/b][q]/(�k
n(q)), defined by

Fb(q) = qb, is an isomorphism.

6.3 Frobenius endomorphism of Sb,0

For finitely many ni ∈ Nb and ki ∈ N, the Frobenius endomorphism

Fb : Z[1/b][q]
(∏

i �
ki
ni

(q)
)

→ Z[1/b][q]
(∏

i �
ki
ni

(q)
)

sending q to qb, is again well-defined. Taking the inverse limit, we get an
algebra endomorphism

Fb : Z[1/b][q]Nb → Z[1/b][q]Nb .

Theorem 16 For any subset T ⊂ Nb, the Frobenius endomorphism Fb :
Z[1/b][q]T → Z[1/b][q]T , sending q to qb, is an isomorphism.

Proof For finitely many ni ∈ Nb and ki ∈ N, consider the natural algebra
homomorphism

J : Z[1/b][q]
(∏

i �
ki
ni

(q)
)

→
∏

i

Z[1/b][q]
(

�
ki
ni

(q)
)

.

This map is injective, because in the unique factorization domain Z[1/b][q],
one has

(�n1(q)k1 . . .�ns (q)ks ) =
s
⋂

j=1

�nj
(q)kj .

Since the Frobenius homomorphism commutes with J and is an isomorphism
on the target of J by Proposition 15, it is an isomorphism on the domain of J .
Taking the inverse limit, we get the claim. �

6.4 Existence of bth root of q in Sb,0

Lemma 17 Suppose n and b are coprime positive integers and y ∈ Q[en]
such that yb = 1. Then y = ±1. If b is odd then y = 1.



144 A. Beliakova et al.

Proof Let d | b be the order of y, i.e. y is a primitive dth root of 1. Then Q[en]
contains y, and hence ed . Since (n, d) = 1, one has Q[en] ∩ Q[ed ] = Q (see
e.g. [13, Corollary of IV.3.2]). Hence if ed ∈ Q[en], then ed ∈ Q, it follows
that d = 1 or 2. Thus y = 1 or y = −1. If b is odd, then y cannot be −1. �

Lemma 18 Let b be a positive integer, T ⊂ Nb, and y ∈ Q[q]T satisfying
yb = 1. Then y = ±1. If b is odd then y = 1.

Proof It suffices to show that for any n1, n2, . . . , nm ∈ T , the ring Q[q]/
(�

k1
n1 . . .�

km
nm

) does not contains a bth root of 1 except possibly for ±1. Using
the Chinese remainder theorem, it suffices to consider the case where m = 1.

The ring Q[q]/(�k
n(q)) is isomorphic to Q[en][x]/(xk), by Proposition 13.

If

y =
k−1
∑

j=0

ajx
j , aj ∈ Q[en]

satisfies yb = 1, then it follows that ab
0 = 1. By Lemma 17 we have a0 = ±1.

One can easily see that a1 = · · · = ak−1 = 0. Thus y = ±1. �

In contrast with Lemma 18, we have

Proposition 19 For any odd positive b, and any subset T ⊂ Nb, the ring
Z[1/b][q]T contains a unique bth root of q , which is invertible in Z[1/b][q]T .

For any even positive b, and any subset T ⊂ Nb, the ring Z[1/b][q]T con-
tains two bth roots of q , which are invertible in Z[1/b][q]T ; one is the nega-
tive of the other.

Proof Let us first consider the case T = Nb. Since Fb is an isomorphism by
Theorem 16, we can define a bth root of q by

q1/b := F−1
b (q) ∈ Sb,0.

If y1 and y2 are two bth root of the same element, then their ratio y1/y2 is a
bth root of 1. From Lemma 18 it follows that if b is odd, there is only one bth
root of q in Z[1/b][q]Nb , and if b is even, there are 2 such roots, one is the
minus of the other. We will denote them ±q1/b.

Further it is known that q is invertible in Z[q]N (see [9]). Actually, there is
an explicit expression q−1 =∑n qn(q;q)n. Hence q−1 ∈ Z[1/b][q]Nb , since
the natural homomorphism from Z[q]N to Z[1/b][q]Nb maps q to q . In a
commutative ring, if x | y and y is invertible, then so is x. Hence any root of
q is invertible.

In the general case of T ⊂ Nb, we use the natural map Z[1/b][q]Nb ↪→
Z[1/b][q]T . �
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Relation with [14]

By Proposition 19, Sb,0 is isomorphic to the ring �
Nb

b := Z[1/b][q1/b]Nb used
in [14]. Furthermore, our invariant π0IM and the one defined in [14] belong to
Sb,0. This follows from Theorem 1 for b odd, and from Proposition 10(c) for
b even. Finally, the invariant defined in [14] for M divided by the invariant of
#iL(b

ki

i ,1) (which is invertible in Sb,0 [14, Sect. 4.1]) coincides with π0IM

up to factor q
1−b

4 by Theorem 1, [14, Theorem 3] and Proposition 10(b).

6.5 Another Frobenius homomorphism

We define another Frobenius type algebra homomorphism. The difference of
the two types of Frobenius homomorphisms is in the target spaces of these
homomorphisms.

Suppose m is a positive integer. Define the algebra homomorphism

Gm : R[q]T → R[q]mT by Gm(q) = qm.

Since �mr(q) always divides �r(q
m), Gm is well-defined.

6.6 Realization of qa2/b in Sp

In this subsection we will construct elements za,b ∈ Sp which will be used in

Sect. 8 and which realize the value of qa2/b, evaluated at q = ξ in a certain
way.

Throughout this subsection, let p be a prime or 1, b = ±pl for an l ∈ N,
and a an integer. Let Bp,j = Gpj (Sp,0). Note that Bp,j ⊂ Sp,j . If b is odd,
by Proposition 19 there is a unique bth root of q in Sp,0; we denote it by xb;0.
If b is even, by Proposition 19 there are exactly two bth root of q , namely
±q1/b. We put xb;0 = q1/b. We define an element zb,a ∈ Sp as follows.

If b | a, let zb,a := qa2/b ∈ Sp .
If b = ±pl

� a, then zb,a ∈ Sp is defined by specifying its projections
πj (zb,a) := zb,a;j ∈ Sp,j as follows. Suppose a = pse, with (e,p) = 1. Then
s < l. For j > s let zb,a;j := 0. For 0 ≤ j ≤ s let

zb,a;j := [Gpj (xb;0)]a2/pj = [Gpj (xb;0)]e2 p2s−j ∈ Bp,j ⊂ Sp,j .

Similarly, for b = ±pl we define an element xb ∈ Sp as follows. We put

π0(xb) := xb;0. For j < l, πj (xb) := [Gpj (xb;0)]pj
. If j ≥ l, πj (xb) := qb.

Notice that for c = (b,pj ) we have

πj (xb) = zb,c;j .



146 A. Beliakova et al.

Proposition 20 Suppose ξ is a root of unity of order r = cr ′, where c = (r, b).
Then

evξ (zb,a) =
{

0 if c � a,

(ξc)a
2
1b′∗ if a = ca1,

where b′∗ is the unique element in Z/r ′
Z such that b′∗(b/c) ≡ 1 (mod r ′).

Moreover,

evξ (xb) = (ξc)b
′∗ .

Proof Let us compute evξ (zb,a). The case of evξ (xb) is completely analo-
gous.

If b | a, then c | a, and the proof is obvious.
Suppose b � a. Let a = pse and c = pi . Then s < l. Recall that zb,a =

∏∞
j=0 zb,a;j . By Lemma 9,

evξ (zb,a) = evξ (zb,a;i ).

If c � a, then i > s. By definition, zb,a;i = 0, hence the statement holds true.
It remains the case c | a, or i ≤ s. Note that ζ = ξc is a primitive root of

order r ′ and (p, r ′) = 1. Since zb,a;i ∈ Bp,i ,

evξ (zb,a;i ) ∈ Z[1/p][ζ ].

From the definition of zb,a;i it follows that (zb,a;i )b/c = (qc)a
2/c2

, hence after
evaluation we have

[evξ (zb,a;i )]b/c = (ζ )a
2
1 .

Note also that

[(ξc)a
2
1b′∗ ]b/c = (ζ )a

2
1 .

Using Lemma 17 we conclude evξ (zb,a;i ) = (ξc)a
2
1b′∗ if b is odd, and

evξ (zb,a;i ) = (ξc)a
2
1b′∗ or evξ (zb,a;i ) = −(ξc)a

2
1b′∗ if b is even. Since

ev1(q
1/b) = 1 and therefore evξ (q

1/b) = ξb∗ (and not −ξb∗) we get the
claim. �

7 Invariant of lens spaces

The purpose of this section is to prove Lemma 6. Throughout this section we
will use the following notations.

Let a and b be coprime integers. Choose â and b̂ such that bb̂ + aâ = 1
with 0 < sn(a)â < |b|. Notice that for a = 1 we have 1̂ = 1 and b̂ = 0.
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Let r be a fixed odd integer (the order of ξ ). For l ∈ Z coprime to r , let
l∗ denote the inverse of l modulo r . If (b, r) = c, let b′∗ denote the inverse of
b′ := b

c
modulo r ′ := r

c
. Notice that for c = 1, we have b∗ = b′∗.

Further, we denote by (x
y
) the Jacobi symbol and by s(a, b) the Dedekind

sum (see e.g. [11]).

7.1 Invariants of lens spaces

Let us compute the SO(3) invariant of the lens space M(b,a;d). Recall that
M(b,a;d) is the lens space L(b, a) together with a knot K inside colored
by d (see Fig. 1).

Proposition 21 Suppose c = (b, r) divides d − sn(a)â. Then

τ ′
M(b,a;d)(ξ) = (−1)

c+1
2

sn(ab)−1
2

( |a|
c

)

(

1 − ξ− sn(a)db′∗

1 − ξ− sn(b)b′∗

)χ(c)

× ξ4∗u−4∗b′∗ a(â−sn(a)d)2
c

where

u = 12s(1, b) − 12 sn(b)s(a, b)

+ 1

b

(

a(1 − d2) + 2(sn(a)d − sn(b)) + a(â − sn(a)d)2) ∈ Z

and χ(c) = 1 if c = 1 and is zero otherwise. If c � (â ± d), τM(b,a;d)(ξ) = 0.

In particular, it follows that τL(b,a)(ξ) = 0 if c � â ± 1.

Proof We consider first the case where b, a > 0. Since two lens spaces
L(b, a1) and L(b, a2) are homeomorphic if a1 ≡ a2 (mod b), we can assume
a < b. Let b/a be given by a continued fraction

b

a
= mn − 1

mn−1 − 1

mn−2 − · · · 1

m2 − 1

m1

.

Using the Lagrange identity

a − 1

b
= (a − 1) + 1

1 + 1

(b − 1)

we can assume mi ≥ 2 for all i.
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The τM(b,a;d)(ξ) can be computed in the same way as the invariant
ξr(L(b, a),A) in [19], after replacing A2 (respectively A) by ξ2∗ (respec-
tively ξ4∗ ). Representing the b/a-framed unknot in Fig. 1 by a Hopf chain (as
e.g. in Lemma 3.1 of [3]), we have

FL
K(ξ, d) =
∑

j1,...,jn

ξ
n
∏

i=1

qmi
j2
i

−1
4

n−1
∏

i=1

[jiji+1] · [jnd][j1]

= Sn(d)

(ξ2∗ − ξ−2∗)n+1
· ξ−4∗

∑n
i=1 mi

where

Sn(d) =
2r
∑

ji=1
odd

ξ4∗
∑

mij
2
i (ξ2∗j1 − ξ−2∗j1)(ξ2∗j1j2 − ξ−2∗j1j2) . . .

(ξ2∗jn−1jn − ξ−2∗jn−1jn)(ξ2∗jnd − ξ−2∗jnd).

Using Lemmas 4.11, 4.12 and 4.20 of [19]1 (and replacing er by ξ4∗ , cn

by c, Nn,1 = p by b, Nn−1,1 = q by a, Nn,2 = q∗ by â and −Nn−1,2 = p∗
by b̂), we get

Sn(d) = (−2)n(
√

rε(r))n
√

cε(c)

(

b
c
r
c

)

(a

c

)

× (−1)
r−1

2
c−1

2 ·
∑

±
χ±(d)ξ

−ca4∗b′∗
(

d∓â
c

)2±2∗b̂(d∓â)+4∗âb̂

where χ±(d) = ±1 if c | d ∓ â and is zero otherwise. Further ε(x) = 1 if
x ≡ 1 (mod 4) and ε(x) = I if x ≡ 3 (mod 4). This implies the second claim
of the lemma.

Note that when c = 1, both χ±(d) are nonzero. If c > 1 and c | (d − â),
χ+(d) = 1, but χ−(d) = 0. Indeed, for c dividing d − â, c | (d + â) if and
only if c | â which is impossible, because c | b but (b, â) = 1.

Inserting the last formula into the Definition (5) we get

τM(b,a;d)(ξ) = Sn(d)

ξ2∗ − ξ−2∗

⎛

⎝−2ξ−3·4∗
r
∑

j=1

ξ4∗j2

⎞

⎠

−n

ξ−4∗
∑n

i=1 mi

1There are misprints in Lemma 4.21: q∗ ± n should be replaced by q∗ ∓ n for n = 1,2.
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where we used that σ+ = n and σ− = 0 (compare [11, p. 243]). From
∑r

j=1 ξ4∗j2 = ε(r)
√

r , we obtain

τM(b,a;d)(ξ) = (−1)
(c−1)(r−1)

4 ε(c)

(

b′

r ′

)

(a

c

)

× √
c
(1 − ξ−db′∗)χ(c)

ξ2∗ − ξ−2∗ ξ4∗(3n−∑i mi)−4∗b̂(â−2d)−4∗b′∗ a(d−â)2
c .

Applying the following formulas for the Dedekind sum (compare [11, Theo-
rem 1.12])

3n −
∑

i

mi = −12s(a, b) + a + â

b
, −3 + b = 12s(1, b) − 2

b
(19)

and dividing the formula for τM(b,a;d)(ξ) by the formula for τL(b,1)(ξ) we get

τ ′
M(b,a;d)(ξ) =

(a

c

)

(

1 − ξ−db′∗

1 − ξ−b′∗

)χ(c)

ξ4∗u−4∗b′∗ a(d−â)2
c

where

u = −12s(a, b) + 12s(1, b) + 1

b

(

a + â − 2 − b̂b(â − 2d)
)

.

Notice, that u ∈ Z. Further observe, that by using aâ + bb̂ = 1, we get

a + â − 2 − b̂b(â − 2d) = 2(d − 1) + a(1 − d2) + a(â − d)2.

This implies the result for 0 < a < b.
To compute τM(−b,a;d)(ξ), observe that τM(b,−a;d) = τM(−b,a;d) is equal to

the complex conjugate of τM(b,a;d). The ratio

τ ′
M(−b,a;d)(ξ) = τM(b,a;d)(ξ)

τL(b,1)(ξ)

can be computed analogously. Using ε(c) = (−1)
c−1

2 ε(c), we have for
a, b > 0

τ ′
M(−b,a,d)(ξ) = (−1)

c+1
2

(a

c

)

(

1 − ξdb′∗

1 − ξ−b′∗

)χ(c)

ξ4∗ũ+4∗b′∗ a(d−â)2
c
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where

ũ = 12s(a, b) + 12s(1, b) + 1

b

(−a − â − 2 + b̂b(â − 2d)
)

.

Using s(a, b) = s(a,−b) = −s(−a, b), we get the result. �

Example For b > 0, we have

τ ′
L(−b,1)(ξ) = (−1)

c+1
2 −χ(c)ξ2∗(b−3)+b∗χ(c).

7.2 Proof of Lemma 6

Assume b = ±pl and p is prime. We have to define the unified invariant
of Mε(b, a) := M(b,a;d(ε)), where d(0) = 1 and d(0̄) is the smallest odd
positive integer such that sn(a)ad(0̄) ≡ 1 (mod b). First observe that such
d(0̄) always exists. Indeed, if p is odd, we can achieve this by adding b,
otherwise the inverse of any odd number modulo 2l is odd.

Recall that we denote the unique positive bth root of q in Sp,0 by q
1
b . We

define the unified invariant IMε(b,a) ∈ Rb as follows. If p �= 2, then IMε(b,a) ∈
Sp is defined by specifying its projections

πjIMε(b,a) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q3s(1,b)−3 sn(b)s(a,b) if j = 0, ε = 0,

(−1)
pj +1

2
sn(ab)−1

2
( |a|

p

)j
q

u′
4 if 0 < j < l, ε = 0̄,

(−1)
pl+1

2
sn(ab)−1

2
( |a|

p

)l
q

u′
4 if j ≥ l, ε = 0̄,

where u′ := u − a(â−sn(a)d(0̄))2

b
and u is defined in Proposition 21. If

p = 2, then only π0IM(b,a) ∈ S2,0 = R2 is non-zero and it is defined to be
q3s(1,b)−3 sn(b)s(a,b).

The IMε(b,a) is well-defined due to Lemma 22 below, i.e. all powers of q

in IMε(b,a) are integers for j > 0 or lie in 1
b
Z for j = 0. Further, for b odd

(respectively even) IMε(b,a) is invertible in S p,ε
p (respectively Rp,ε

p ) since q

and q
1
b are invertible in these rings.

In particular, for odd b = pl , we have IL(b,1) = 1, and

πjIL(−b,1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q
b−3

2 + 1
b if j = 0,

(−1)
pj +1

2 q
b−3

2 if 0 < j < l, p odd,

(−1)
pl+1

2 q
b−3

2 if j ≥ l, p odd.

It is left to show, that for any ξ of order r coprime with p, we have

evξ (IM0(b,a)) = τ ′
M0(b,a)

(ξ)
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and if r = pjk with j > 0, then

evξ (IM 0̄(b,a)
) = τ ′

M 0̄(b,a)
(ξ) .

For ε = 0, this follows directly from Propositions 20 and 21 with c = d = 1.
For ε = 0̄, we have c = (pj , b) > 1 and we get the claim by using Proposi-
tion 21 and

ξ
a(â−sn(a)d(0̄))2

b = ξc
a(â−sn(a)d(0̄))2

bc = ξbb′∗ a(â−sn(a)d(0̄))2
bc = ξb′∗ a(â−sn(a)d(0̄))2

c , (20)

where for the second equality we use c ≡ bb′∗ (mod r). Notice that due to
part (2) of Lemma 22 below, b and c divide â − sn(a)d(0̄) and therefore all
powers of ξ in (20) are integers. �

The following Lemma is used in the proof of Lemma 6.

Lemma 22 We have

(a) 3s(1, b) − 3 sn(b) s(a, b) ∈ 1
b
Z,

(b) b | â − sn(a)d(0̄) and therefore u′ ∈ Z, and
(c) 4 | u′ for d = d(0̄).

Proof The first claim follows from the formulas (19) for the Dedekind sum.
The second claim follows from the fact that (a, b) = 1 and

a(â − sn(a)d) = 1 − sn(a)ad − bb̂ ≡ 0 (mod b),

since d is chosen such that sn(a)ad ≡ 1 (mod b). For the third claim, notice
that for odd d we have

4 | (1 − d2) and 4 | 2(sn(a)d − sn(b)). �

8 Laplace transform

This section is devoted to the proof of Theorem 4 by using Andrew’s identity.
Throughout this section, let p be a prime or p = 1, and b = ±pl for an l ∈ N.

8.1 Definition

The Laplace transform is a Z[q±1]-linear map defined by

Lb : Z[z±1, q±1] → Sp,

za �→ zb,a.
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In particular, we put Lb;j := πj ◦ Lb and have Lb;j (za) = zb,a;j ∈ Sp,j .
Further, for any f ∈ Z[z±1, q±1] and n ∈ Z, we define

f̂ := f |z=qn ∈ Z[q±n, q±1] .

Lemma 23 Suppose f ∈ Z[z±1, q±1]. Then for a root of unity ξ of odd order,

∑

n

ξ
qb n2−1

4 f̂ = γb(ξ) evξ (L−b(f )).

Proof It is sufficient to consider the case f = za . Then, by the same argu-
ments as in the proof of [3, Lemma 1.3], we have

∑

n

ξ
qb n2−1

4 qna =
{

0 if c � a,

(ξc)−a2
1b′∗ γb(ξ) if a = ca1.

(21)

The result follows now from Proposition 20. �

8.2 Proof of Theorem 4

Recall that

A(n, k) =
∏k

i=0(q
n + q−n − qi − q−i )

(1 − q)(qk+1;q)k+1
.

We have to show that there exists an element Qb,k ∈ Rb such that for every
root of unity ξ of odd order r one has

∑

n
ξ
qb n2−1

4 A(n, k)

FUb(ξ)
= evξ (Qb,k).

Applying Lemma 23 to FUb(ξ) =∑n
ξ
qb n2−1

4 [n]2, we get for c = (b, r)

FUb(ξ) = 2γb(ξ)evξ

(

(1 − x−b)
χ(c)

(1 − q−1)(1 − q)

)

, (22)

where as usual, χ(c) = 1 if c = 1 and is zero otherwise. We will prove that for
an odd prime p and any number j ≥ 0 there exists an element Qk(q, xb, j) ∈
Sp,j such that

1

(qk+1;q)k+1
Lb;j

(

k
∏

i=0

(z + z−1 − qi − q−i )

)

= 2Qk(q
sn(b), xb, j). (23)
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If p = 2 we will prove the claim for j = 0 only, since S2,0 � R2. The
case p = ±1 was done e.g. in [2]. Theorem 4 follows then from Lemma 23
and (22) where Qb,k is defined by its projections

πjQb,k := 1 − q−1

(1 − x−b)χ(pj )
Qk(q

− sn(b), x−b, j).

We split the proof of (23) into two parts. In the first part we will show that
there exists an element Qk(q, xb, j) such that equality (23) holds. In the sec-
ond part we show that Qk(q, xb, j) lies in Sp,j .

Part 1, b odd case

Assume b = ±pl with p �= 2. We split the proof into several lemmas.

Lemma 24 For xb;j := πj (xb) and c = (b,pj ),

Lb;j

(

k
∏

i=0

(z + z−1 − qi − q−i )

)

= 2(−1)k+1
[

2k + 1
k

]

Sb;j (k, q),

where

Sb;j (k, q) := 1 +
∞
∑

n=1

q(k+1)cn(q−k−1;q)cn

(qk+2;q)cn
(1 + qcn)xn2

b;j . (24)

Observe that for n > k+1
c

the term (q−k−1;q)cn is zero and therefore the
sum in (24) is finite.

Proof Since Lb is invariant under z → z−1 one has

Lb

(

k
∏

i=0

(z + z−1 − qi − q−i)

)

= −2Lb(z
−k(zq−k;q)2k+1),

and the q-binomial theorem (e.g. see [5], II.3) gives

z−k(zq−k;q)2k+1 = (−1)k
k+1
∑

i=−k

(−1)i
[

2k + 1
k + i

]

zi. (25)

Notice that Lb;j (za) �= 0 if and only if c | a. Applying Lb;j to the RHS of
(25), only the terms with c | i survive and therefore

Lb;j
(

z−k(zq−k;q)2k+1
)= (−1)k

�(k+1)/c�
∑

n=−�k/c�
(−1)cn

[

2k + 1
k + cn

]

zb,cn;j .
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Separating the case n = 0 and combining positive and negative n this is equal
to

(−1)k
[

2k + 1
k

]

+ (−1)k
�(k+1)/c�
∑

n=1

(−1)cn
([

2k + 1
k + cn

]

+
[

2k + 1
k − cn

])

zb,cn;j ,

where we use the convention that
[ x

−1

]

is put to be zero for positive x. Further,

[

2k + 1
k + cn

]

+
[

2k + 1
k − cn

]

= {k + 1}
{2k + 2}

[

2k + 2
k + cn + 1

]

(qcn/2 + q−cn/2)

and

{k + 1}
{2k + 2}

[

2k + 2
k + cn + 1

][

2k + 1
k

]−1

= (−1)cnq(k+1)cn+ cn
2

(q−k−1;q)cn

(qk+2;q)cn
.

Using zb,cn;j = (zb,c;j )n
2 = xn2

b;j we get the result. �

To define Qk(q, xb, j) we will need Andrew’s identity (3.43) of [1]:

∑

n≥0

(−1)nαnt
− n(n−1)

2 +sn+Nn (t−N)n

(tN+1)n

s
∏

i=1

(bi)n(ci)n

bn
i cn

i ( t
bi

)n(
t
ci

)n

= (t)N(
q

bscs
)N

( t
bs

)N( t
cs

)N

∑

ns≥···≥n2≥n1≥0

βn1

tns (t−N)ns (bs)ns (cs)ns

(t−Nbscs)ns

×
s−1
∏

i=1

tni

b
ni

i c
ni

i

(bi)ni
(ci)ni

( t
bi

)ni+1(
t
ci

)ni+1

( t
bici

)ni+1−ni

(t)ni+1−ni

.

Here and in what follows we use the notation (a)n := (a; t)n. The special
Bailey pair (αn,βn) is chosen as follows

α0 = 1, αn = (−1)nt
n(n−1)

2 (1 + tn),

β0 = 1, βn = 0 for n ≥ 1.

Lemma 25 Sb;j (k, q) is equal to the LHS of Andrew’s identity with the pa-
rameters fixed below.

Proof Since

Sb;j (k, q) = S−b;j (k, q−1),
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it is enough to look at the case when b > 0. Define b′ := b
c

and let ω be a b′th
primitive root of unity. For simplicity, put N := k + 1 and t := xb;j . Using
the following identities

(qy;q)cn =
c−1
∏

l=0

(qy+l;qc)n,

(qyc;qc)n =
b′−1
∏

i=0

(ωity; t)n,

where the later is true due to tb
′ = xb′

b;j = qc for all j , and choosing a cth root

of t denoted by t
1
c we can see that

Sb;j (k, q) = 1 +
∞
∑

n=1

b′−1
∏

i=0

c−1
∏

l=0

(ωit
−N+l

c )n

(ωit
N+1+l

c )n

(1 + tb
′n)tn

2+b′Nn.

Now we choose the parameters for Andrew’s identity as follows. We put
a := c−1

2 , d := b′−1
2 and m := �N

c
�. For l ∈ {1, . . . , c − 1} there exist unique

ul, vl ∈ {0, . . . , c−1} such that ul ≡ N + l (mod c) and vl ≡ N − l (mod c).
Note that vl = uc−l . We define Ul := −N+ul

c
and Vl := −N+vl

c
. Then Ul,Vl ∈

1
c
Z but Ul + Vl ∈ Z. We define

bl := tUl , cl := tVl for l = 1, . . . , a,

ba+i := ωit−m, ca+i := ω−i t−m for i = 1, . . . , d,

ba+ld+i := ωitUl , ca+ld+i := ω−i tVl for i = 1, . . . , d and
l = 1, . . . , c − 1,

bg+i := −ωit, cg+i := −ω−i t for i = 1, . . . , d,

bs−1 := t−m, cs−1 := tN+1,

bs → ∞, cs → ∞,

where g = a + cd and s = (c + 1)b′
2 + 1.

We now calculate the LHS of Andrew’s identity. Using the notation

(ω±1tx)n = (ωtx)n(ω
−1tx)n

and the identities

lim
c→∞

(c)n

cn
= (−1)nt

n(n−1)
2 and lim

c→∞

(

t

c

)

n

= 1
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we get

LHS = 1 +
∑

n≥1

tn(n−1+s+N−y)(1 + tn)
(t−N)n

(tN+1)n

×
a
∏

l=1

(tUl )n(t
Vl )n

(t1−Ul )n(t1−Vl )n
·

d
∏

i=1

(ω±i t−m)n

(ω±i t1+m)n

×
d
∏

i=1

c−1
∏

l=1

(ωitUl )n(ω
−i tVl )n

(ω−i t1−Ul )n(ωit1−Vl )n
·

d
∏

i=1

(−ω±i t)n

(−ω±i )n
· (t−m)n(t

N+1)n

(t1+m)n(t−N)n

where

y :=
a
∑

l=1

(Ul + Vl) +
d
∑

i=1

c−1
∑

l=1

(Ul + Vl) − m(2d + 1) + 2d + 1 + N.

Since
∑c−1

l=1 (Ul +Vl) = 2
∑a

l=1(Ul +Vl) = 2(−N +m+ c−1
2 ) and 2d + 1 =

b′, we have

n − 1 + s + N − y = n + Nb′.

Further,

d
∏

i=1

(−ω±i t)n

(−ω±i )n
=

b′−1
∏

i=1

1 + ωitn

1 + ωi
= 1 + tb

′n

1 + tn

and

a
∏

l=1

(tUl )n(t
Vl )n

(t1−Ul )n(t1−Vl )n
·

d
∏

i=1

(ω±i t−m)n

(ω±i t1+m)n

×
d
∏

i=1

c−1
∏

l=1

(ωitUl )n(ω
−i tVl )n

(ω−i t1−Ul )n(ωit1−Vl )n
· (t−m)n

(t1+m)n

=
b′−1
∏

i=0

c−1
∏

l=0

(ωit
−N+l

c )n

(ωit
N+1+l

c )n

.

Taking all the results together, we see that the LHS is equal to Sb;j (k, q). �
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Let us now calculate the RHS of Andrew’s identity with parameters chosen
as above. For simplicity, we put δj := nj+1 − nj . Then the RHS is given by

RHS = (t)N
∑

ns≥···≥n2≥n1=0

tx · (t−N)ns (bs)ns (cs)ns
∏s−1

i=1(t)δi
(t−Nbscs)ns

× (t−m)ns−1(t
N+1)ns−1(t

m−N)δs−1

(tm+1)ns (t
−N)ns

×
a
∏

l=1

(tUl )nl
(tVl )nl

(t1−Ul−Vl )δl

(t1−Ul )nl+1(t
1−Vl )nl+1

×
d
∏

i=1

(ω±i t−m)na+i
(t2m+1)δa+i

(ω±i tm+1)na+i+1

(−ω±i t)ng+i
(t−1)δg+i

(−ω±i )ng+i+1

×
d
∏

i=1

c−1
∏

l=1

(ωitUl )na+ld+i
(ω−i tVl )na+ld+i

(t1−Ul−Vl )δa+ld+i

(ω−i t1−Ul )na+ld+i+1(ω
it1−Vl )na+ld+i+1

where

x =
a
∑

l=1

(1 − Ul − Vl)nl +
d
∑

i=1

(2m + 1)na+i

+
d
∑

i=1

c−1
∑

l=1

(1 − Ul − Vl)na+ld+i −
d
∑

i=1

ng+i + (m − N)ns−1 + ns.

For c = 1 or d = 0, we use the convention that empty products are set to be 1
and empty sums are set to be zero.

Let us now have a closer look at the RHS. Notice, that

lim
bs,cs→∞

(bs)ns (cs)ns

(t−Nbscs)ns

= (−1)ns t
ns (ns−1)

2 tNns .

The term (t−1)δg+i
is zero unless δg+i ∈ {0,1}. Therefore, we get

d
∏

i=1

(−ω±i t)ng+i

(−ω±i )ng+i+1

=
d
∏

i=1

(1 + ω±i tng+i )1−δg+i .

Due to the term (t−m)ns , we have ns ≤ m and therefore ni ≤ m for all i ≤
s − 1. Multiplying the numerator and denominator of each term of the RHS
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by

a
∏

l=1

(t1−Ul+nl+1)m−nl+1(t
1−Vl+nl+1)m−nl+1

d
∏

i=1

(ω±i tm+1+na+i+1)m−na+i+1

×
d
∏

i=1

c−1
∏

l=1

(ω−i t1−Ul+na+ld+i+1)m−na+ld+i+1(ω
it1−Vl+na+ld+i+1)m−na+ld+i+1

gives in the denominator
∏b′−1

i=0
∏c−1

l=1 (ωit1−Ul )m ·∏b′−1
i=1 (ωitm+1)m. This is

equal to

c−1
∏

l=1

(tb
′(1−Ul); tb′

)m · (tb
′(m+1); tb′

)m

(tm+1; t)m = (qN+1;q)cm

(tm+1; t)m .

Further,

(t)N(tN+1)ns−1 = (t)N+ns−1 = (t)m(tm+1)N−m+ns−1 .

The term (t−N+m)δs−1 is zero unless δs−1 ≤ N − m and therefore

(tm+1)N−m+ns−1

(tm+1)ns

= (tm+1+ns )N−m−δs−1 .

Taking the above calculations into account, we get

RHS = (t; t)2m

(qN+1;q)cm
· Tk(q, t) (26)

where

Tk(q, t) :=
∑

ns≥···≥n2≥n1=0

(−1)ns tx
′ · (t−m)ns−1 · (tm+1+ns )N−m−δs−1

× (t−N+m)δs−1
∏s−1

i=1(t)δi

·
a
∏

l=1

(t1−Ul−Vl )δl
·

d
∏

i=1

(t2m+1)δa+i
(t−1)δg+i

×
d
∏

i=1

c−1
∏

l=1

(t1−Ul−Vl )δa+ld+i

×
a
∏

l=1

(tUl )nl
(tVl )nl

(t1−Ul+nl+1)m−nl+1(t
1−Vl+nl+1)m−nl+1
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×
d
∏

i=1

(1 + ω±i tng+i )1−δg+i

×
d
∏

i=1

(ω±i t−m)na+i
(ω±i tm+1+na+i+1)m−na+i+1

×
d
∏

i=1

c−1
∏

l=1

(ωitUl )na+ld+i
(ω−i tVl )na+ld+i

×
d
∏

i=1

c−1
∏

l=1

(ω−i t1−Ul+na+ld+i+1)m−na+ld+i+1

× (ωit1−Vl+na+ld+i+1)m−na+ld+i+1

and x′ := x + ns(ns−1)
2 + Nns .

We now define the element Qk(q, xb, j) by

Qk(q, xb, j) :=
(

(−1)k+1q− k(k+1)
2

)
1+sn(b)

2
(

q(k+1)2
)

1−sn(b)
2

× (xb;j ;xb;j )2m

(q;q)N+cm

Tk(q, xb;j ).

By Lemmas 24 and 25, (26) and the following Lemma 26, we see that this
element satisfies (23).

Lemma 26 The following formula holds.

(−1)k+1
[

2k + 1
k

]

(qk+1;q)−1
k+1 = (−1)k+1 q−k(k+1)/2

(q;q)k+1
= q−(k+1)2

(q−1;q−1)k+1
.

Proof This is an easy calculation using

(qk+1;q)k+1 = (−1)k+1q(3k2+5k+2)/4 {2k + 1}!
{k}! . �

Part 1, b even case.

Let b = ±2l . We have to prove equality (23) only for j = 0, i.e. we have to
show

1

(qk+1;q)k+1
Lb;0

(

k
∏

i=0

(z + z−1 − qi − q−i )

)

= 2Qk(q
sn(b), xb,0).
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The calculation works similar to the odd case. Note that we have c = 1 here.
This case was already done in [3] and [14]. Since their approaches are slightly
different and for the sake of completeness, we will give the parameters for
Andrew’s identity and the formula for Qk(q, xb,0) nevertheless.

We put t := xb;0, d := b
2 − 1, ω a bth root of unity and choose a primitive

square root ν of ω. Define the parameters of Andrew’s identity by

bi := ωit−N, ci := ω−i t−N for i = 1, . . . , d,

bd+i := −ν2i−1t, cd+i := −ν−(2i−1)t for i = 1, . . . , d + 1,

bb := −t−N, cb := −t0 = −1,

bs−1 := t−N, cs−1 := tN+1,

bs → ∞, cs → ∞,

where s = b + 2. Now we can define the element

Qk(q, xb,0) :=
(

(−1)k+1q− k(k+1)
2

)
1+sn(b)

2
(

q(k+1)2
)

1−sn(b)
2

× (xb;0;xb;0)2N

(q;q)2N

1

(−xb;0;xb;0)N
Tk(q, xb;0)

where

Tk(q, t) :=
∑

ns−1≥···≥n1=0

(−1)ns−1 tx
′′

×
∏d

i=1(t
2N+1)δi

·∏d+1
i=1 (t−1)δd+i

· (tN+1)δb
∏s−2

i=1(t)δi

× (t−N)ns−1 · (−tN+1+ns−1)N−ns−1 · (−t−N)nb

× (−t)nb−1 · (−tns−1+1)N−ns−1

×
d
∏

i=1

(ω±i t−N)ni
(ω±i tN+1+ni+1)N−ni+1

×
d+1
∏

i=1

(1 + ν±(2i−1)tnd+i )1−δd+i

and x′′ := ∑d
i=1(2N + 1)ni −∑d+1

i=1 nd+i + ns−1(ns−1−1)

2 + (N + 1)(nb +
ns−1). We use the notation (a;b)−1 = 1

1−ab−1 .
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Part 2

We have to show that Qk(q, xb, j) ∈ Sp,j , where j ∈ N ∪ {0} if p is odd, and
j = 0 for p = 2. The following two lemmas do the proof.

Lemma 27 For t = xb;j ,

Tk(q, t) ∈ Z[q±1, t±1].

Proof Let us first look at the case b odd and positive. Since for a �= 0, (ta)n
is always divisible by (t)n, it is easy to see that the denominator of each
term of Tk(q, t) divides its numerator. Therefore we proved that Tk(q, t) ∈
Z[t±1/c,ω]. Since

Sb;j (k, q) = (t; t)2m

(qN+1;q)cm
· Tk(q, t), (27)

there are f0, g0 ∈ Z[q±1, t±1] such that Tk(q, t) = f0
g0

. This implies that

Tk(q, t) ∈ Z[q±1, t±1] since f0 and g0 do not depend on ω and the cth root
of t .

The proofs for the even and the negative case work similar. �

Lemma 28 For t = xb;j ,

(t; t)2m

(q;q)N+cm

1

((−t; t)N)λ
∈ Sp,j

where λ = 1 and j = 0 if p = 2, and λ = 0 and j ∈ N ∪ {0} otherwise.

Proof Notice that

(q;q)N+cm = (̃q;q)N+cm(qc;qc)2m,

where we use the notation

(̃qa;q)n :=
n−1
∏

j=0
c�(a+j)

(1 − qa+j ).

We have to show that

(qc;qc)2m

(t; t)2m

· (̃q;q)N+cm · ((−t; t)N)λ
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is invertible in Z[1/p][q] modulo any ideal (f ) = (
∏

n �
kn
n (q)) where n runs

through a subset of pj
Np . Recall that in a commutative ring A, an element a

is invertible in A/(d) if and only if (a) + (d) = (1). If (a) + (d) = (1) and
(a) + (e) = (1), multiplying together we get (a) + (de) = (1). Hence, it is
enough to consider f = �pjn(q) with (n,p) = 1. For any X ∈ N, we have

(̃q;q)X =
X
∏

i = 1
c � i

∏

d|i
�d(q), (28)

(−t; t)X = (t2; t2)X

(t; t)X =
X
∏

i=1

∏

d|i
�2d(t), (29)

(qc;qc)X

(t; t)X = (tb
′ ; tb′

)X

(t; t)X =
∏X

i=1
∏

d|ib′ �d(t)
∏X

i=1
∏

d|i �d(t)
(30)

for b′ = b/c. Recall that (�r(q),�a(q)) = (1) in Z[1/p][q] if either r/a

is not a power of a prime or a power of p. For r = pjn odd and a such
that c � a, one of the conditions is always satisfied. Hence (28) is invertible
in Sp,j . If b = c or b′ = 1, (29) and (30) do not contribute. For c < b, notice
that q is a cnth primitive root of unity in Z[1/p][q]/(�cn(q)) = Z[1/p][ecn].
Therefore tb

′ = qc is an nth primitive root of unity. Since (n, b′) = 1, t must
be a primitive nth root of unity in Z[1/p][ecn], too, and hence �n(t) = 0
in that ring. Since for j with (j,p) > 1, (�j (t),�n(t)) = (1) in Z[1/p][t],
we have �j(t) is invertible in Z[1/p][ecn], and therefore (29) and (30) are
invertible, too. �
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Appendix A: Proof of Theorem 3

The appendix is devoted to the proof of Theorem 3, a generalization of the
deep integrality result of Habiro, namely Theorem 8.2 of [7]. The existence
of this generalization and some ideas of the proof were kindly communicated
to us by Habiro.

Reduction to a result on values of the colored Jones polynomial

We will use the notations of [7]. We put q = eh, and v = eh/2, where h is
a free parameter. The quantum algebra Uh = Uh(sl2), generated by E, F
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and H , subject to some relations, is the quantum deformation of the universal
enveloping algebra U(sl2).

Let Vn be the unique (n + 1)-dimensional irreducible Uh-module. In [7],
Habiro defined a new basis P̃ ′

k , k = 0,1,2, . . . , for the Grothendieck ring of
finite-dimensional Uh(sl2)-modules with

P̃ ′
k := v

1
2 k(1−k)

{k}!
k−1
∏

i=0

(V1 − v2i+1 − v−2i−1).

Put P̃ ′
k = {P̃ ′

k1
, . . . , P̃ ′

km
}. It follows from Lemma 6.1 of [7] that we will

have identity (9) of Theorem 3 if we put

CL
L′(k, j) = JL
L′ (P̃ ′
k, j)

∏

i

(−1)ki qk2
i +ki+1.

Hence to prove Theorem 3 it is enough to show the following.

Theorem A.1 Suppose L 
 L′ is a colored framed link in S3 such that L has
zero linking matrix and L′ has odd colors. Then for k = max{k1, . . . , km} we
have

JL
L′(P̃ ′
k, j) ∈ (qk+1;q)k+1

1 − q
Z[q±1].

In the case L′ = ∅, this statement was proved in [7, Theorem 8.2]. Since
our proof is a modification of the original one, we first sketch Habiro’s origi-
nal proof for the reader’s convenience.

A.1 Sketch of the proof of Habiro’s integrality theorem

Geometric part

Let us first recall the notion of a bottom tangle, introduced by Habiro in [8].
An n-component bottom tangle T = T1 
 · · · 
 Tn is a framed tangle con-

sisting of n arcs T1, . . . , Tn in a cube such that all the endpoints of T are on a
line at the bottom square of the cube, and for each i = 1, . . . , n the component
Ti runs from the 2ith endpoint on the bottom to the (2i − 1)st endpoint on
the bottom, where the endpoints are counted from the left. An example, the
Borromean bottom tangle B , is given in Fig. 2.

In [8], Habiro defined a braided subcategory B of the category of framed,
oriented tangles which acts on the bottom tangles by composition (vertical
pasting). The objects of B are the symbols b⊗n, n ≥ 0, where b :=↓↑. For m,
n ≥ 0, a morphism X of B from b⊗m to b⊗n is the isotopy class of a framed,
oriented tangle X which we can compose with m-component bottom tangles
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Fig. 2 Borromean bottom
tangle B

to get n-component bottom tangles. Let B(m,n) be the set of morphisms from
b⊗m to b⊗n. The composite YX of two morphisms is the gluing of Y to the
bottom of X, and the identity morphism 1b⊗m =↓↑ · · · ↓↑ is a tangle consist-
ing of 2m vertical arcs. The monoidal structure is given by pasting tangles
side by side. The braiding for the generating object b with itself is given by

ψb,b = .
Corollary 9.13 in [8] states the following.

Proposition A.2 (Habiro) If the linking matrix of a bottom tangle T is zero
then T can be presented as T = WB⊗k , where k ≥ 0 and W ∈ B(3k,n) is
obtained by horizontal and vertical pasting of finitely many copies of 1b, ψb,b,
ψ−1

b,b , and

ηb = , μb = , γ+ = , γ− = .

Algebraic part

Let K = vH = e
hH
2 . Habiro introduced the integral version Uq , which is the

Z[q, q−1]-subalgebra of Uh freely spanned over Z[q, q−1] by F̃ (i)Kjek for
i, k ≥ 0, j ∈ Z, where

F̃ (n) = FnKn

v
n(n−1)

2 [n]!
and e = (v − v−1)E.

There is Z/2Z-grading, Uq = U 0
q ⊕ U 1

q , where U 0
q (resp. U 1

q ) is spanned by

F̃ (i)K2j ek (resp. F̃ (i)K2j+1ek). We call this the ε-grading, and U 0
q (resp. U 1

q )
the even (resp. odd) part.

The two-sided ideal Fp in Uq generated by ep induces a filtration on
(Uq)⊗n, n ≥ 1, by

Fp((Uq)⊗n) =
n
∑

i=1

(Uq)⊗i−1 ⊗ Fp(Uq) ⊗ (Uq)⊗n−i ⊂ (Uq)⊗n.
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Let (Ũq)⊗̃n be the image of the homomorphism

lim←−−−
p≥0

(Uq)⊗n

Fp((Uq)⊗n)
→ U ⊗̂n

h

where ⊗̂ is the h-adically completed tensor product. By using Fp(U ε
q ) :=

Fp(Uq) ∩ U ε
q one defines (Ũ ε

q )⊗̃n for ε ∈ {0,1} in a similar fashion.
By definition (Sect. 4.2 of [7]), the universal sl2 invariant JT of an

n-component bottom tangle T is an element of U ⊗̂n
h . Theorem 4.1 in [7]

states that, in fact, for any bottom tangle T with zero linking matrix, JT is
even, i.e.

JT ∈ (Ũ 0
q )⊗̃n. (A.1)

Further, using the fact that JK of a 0-framed bottom knot K (i.e. a
1-component bottom tangle) belongs to the center of Ũ 0

q , Habiro showed that

JK =
∑

n≥0

(−1)nqn(n+1) (1 − q)

(qn+1;q)n+1
JK(P̃ ′

n)σn

where

σn =
n
∏

i=0

(C2 − (qi + 2 + q−i ))

with C = (v − v−1)F̃ (1)K−1e + vK + v−1K−1,

the quantum Casimir operator. The σn provide a basis for the even part of the

center. From this, Habiro deduced that JK(P̃ ′
n) ∈ (qn+1;q)n+1

(1−q)
Z[q, q−1].

The case of n-component bottom tangles reduces to the 1-component case
by partial trace, using certain integrality of traces of even element (Lemma 8.5
of [7]) and the fact that JT is invariant under the adjoint action.

Algebro-geometric part

The proof of (A.1) uses Proposition A.2, which allows to build any bottom
tangle T with zero linking matrix from simple parts, i.e. T = W(B⊗k).

On the other hand, the construction of the universal invariant JT extends
to the braided functor J : B → ModUh

from B to the category of Uh-modules.
This means that JW(B⊗k) = JW(JB⊗k ). Therefore, in order to show (A.1), we

need to check that JB ∈ (Ũ 0
q )⊗̃3, and then verify that JW maps the even part

to itself. The first check can be done by a direct computation [7, Sect. 4.3].
The last verification is the content of Corollary 3.2 in [7].
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A.2 Proof of Theorem A.1

Generalization of (A.1)

To prove Theorem A.1 we need a generalization of (A.1) or Theorem 4.1 in
[7] to tangles with closed components. To state the result let us first introduce
two new gradings.

Suppose T is an n-component bottom tangle in a cube, homeomorphic to
the 3-ball D3. Let S̃(D3 \ T ) be the Z[q±1/4]-module freely generated by
the isotopy classes of framed unoriented colored links in D3 \ T , including
the empty link. For such a link L ⊂ D3 \ T with m-components colored by
n1, . . . , nm, we define our new gradings as follows. First provide the compo-
nents of L with arbitrary orientations. Let lij be the linking number between
the ith component of T and the j th component of L, and pij be the linking
number between the ith and the j th components of L. For X = T 
 L we put

grε(X) := (ε1, . . . , εn) ∈ (Z/2Z)n, where εi :=
∑

j

lij n
′
j (mod 2), and

grq(L) :=
∑

1≤i,j≤m

pijn
′
in

′
j + 2

∑

1≤j≤m

(pjj + 1)n′
j (mod 4),

where n′
i := ni − 1.

(A.2)

It is easy to see that the definitions do not depend on the orientation of L.
The meaning of grq(L) is the following: The colored Jones polynomial of

L, a priori a Laurent polynomial of q1/4, is actually a Laurent polynomial of
q after dividing by qgrq (L)/4; see [17] for this result and its generalization to
other Lie algebras.

We further extend both gradings to S̃(D3 \ T ) by

grε(q
1/4) = 0, grq(q

1/4) = 1 (mod 4).

Recall that the universal invariant JX can also be defined when X is the
union of a bottom tangle and a colored link (see [8, Sect. 7.3]). In [8], it is
proved that JX is adjoint invariant. The generalization of Theorem 4.1 of [7]
is the following.

Theorem A.3 Suppose X = T 
 L, where T is a n-component bottom tan-
gle with zero linking matrix and L is a framed unoriented colored link with
grε(X) = (ε1, . . . , εn). Then

JX ∈ qgrq (L)/4
(

Ũ ε1
q ⊗̃ · · · ⊗̃Ũ εn

q

)

.
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Corollary A.4 Suppose L is colored by a tuple of odd numbers, then

JX ∈ (Ũ 0
q )⊗̃n.

Since JX is invariant under the adjoint action, Theorem A.1 follows from
Corollary A.4 by repeating Habiro’s arguments. �

Hence it remains to prove Theorem A.3. In the proof we will need a notion
of a good morphism.

Good morphisms

Let Im := 1b⊗m ∈ B(m,m) be the identity morphism of b⊗m in the cube C.
A framed link L in the complement C \ Im is good if L is geometrically
disjoint from all the up arrows of b⊗m, i.e. there is a plane dividing the cube
into two halves, such that all the up arrows are in one half, and all the down
arrows and L are in the other. Equivalently, there is a diagram in which all the
up arrows are above all components of L. The union W of Im and a colored
framed good link L is called a good morphism. If Y is any bottom tangle
so that we can compose X = WY , then it is easy to see that grε(X) does
not depend on Y , and we define grε(W) := grε(X). Also define grq(W) :=
grq(L).

As in the case with L = ∅, the universal invariant extends to a map JW :
U ⊗m

h → U ⊗m
h .

Proof of Theorem A.3

The strategy here is again analogous to the Habiro case: In Proposition A.5
we will decompose X into simple parts: the top is a bottom tangle with zero
linking matrix, the next is a good morphism, and the bottom is a morphism
obtained by pasting copies of μb. Since any bottom tangle with zero linking
matrix satisfies Theorem A.3 and μb is the product in Uq , which preserves the
gradings, it remains to show that any good morphism preserves the gradings.
This is done in Proposition A.6 below. �

Proposition A.5 Assume X = T 
 L where T is a n-component bottom tan-
gle with zero linking matrix and L is a link. Then there is a presentation
X = W2W1W0, where W0 is a bottom tangle with zero linking matrix, W1 is
a good morphism, and W2 is obtained by pasting copies of μb.

Proof Let us first define γ̃± ∈ B(i, i + 1) for any i ∈ N as follows.
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If a copy of μb is directly above ψ±1
b,b or γ±, one can move μb down by

isotopy and represent the result by pasting copies of ψ±1
b,b and γ̃±. It is easy

to see that after the isotopy γ± gets replaced by γ̃± and ψ±1
b,b by two copies

of ψ±1
b,b .

Using Proposition A.2 and reordering the basic morphisms so that the μ’s
are at the bottom, one can see that T admits the following presentation:

T = W2W̃1(B
⊗k)

where B is the Borromean tangle, W2 is obtained by pasting copies of μb and
W̃1 is obtained by pasting copies of ψ±1

b,b , γ̃± and ηb.

Let P be the horizontal plane separating W̃1 from W2. Let P+ (P−)
be the upper (lower, respectively) half-space. Note that W0 = W̃1(B

⊗k) is
a bottom tangle with zero linking matrix lying in P+ and does not have
any minimum points. Hence the pair (P+,W0) is homeomorphic to the pair
(P+, l trivial arcs). Similarly, W2 does not have any maximum points; hence
L can be isotoped off P− into P+. Since the pair (P+,W0) is homeomor-
phic to the pair (P+, l trivial arcs) one can isotope L in P+ to the bottom end
points of down arrows. We then obtain the desired presentation. �

Proposition A.6 For every good morphism W , the operator JW preserves
gradings in the following sense. If x ∈ U ε1

q ⊗ · · · ⊗ U εm
q , then

JW(x) ∈ qgrq (W)/4
(

U ε′
1

q ⊗ · · · ⊗ U ε′
m

q

)

,

where (ε′
1, . . . , ε

′
m) = (ε1, . . . , εm) + grε(W).

The rest of the appendix is devoted to the proof of Proposition A.6.

Proof of Proposition A.6

We proceed as follows. Since JX is invariant under cabling and skein re-
lations, and by Lemma A.8 below, both relations preserve grε and grq , we

consider the quotient of S̃(D3 \ T ) by these relations known as a skein
module of D3 \ T . For T = In, this module has a natural algebra struc-
ture, with good morphisms forming a subalgebra. By Lemma A.7 (see also
Fig. 4), the basis elements Wγ of this subalgebra are labeled by n-tuples
γ = (γ1, . . . , γn) ∈ (Z/2Z)n. It’s clear that if the proposition holds for Wγ1

and Wγ2 , then it holds for Wγ1Wγ2 . Hence it remains to check the claim for
Wγ ’s. This is done in Corollary A.10 for basic good morphisms correspond-
ing to γ whose non-zero γj ’s are consecutive. Finally, any Wγ can be ob-
tained by pasting a basic good morphism with few copies of ψ±

b,b. Since Jψ±
preserves gradings (compare (3.15), (3.16) in [7]), the claim follows from
Lemmas A.7, A.8 and Proposition A.9 below. �
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Fig. 3 Tangles involved in the skein relations

Cabling and skein relations

Let us introduce the following relations in S̃(D3 \ T ).
Cabling relations:

(a) Suppose ni = 1 for some i. The first cabling relation is L = L̃, where L̃

is obtained from L by removing the ith component.
(b) Suppose ni ≥ 3 for some i. The second cabling relation is L = L′′ − L′,

where L′ is the link L with the color of the ith component switched to
ni − 2, and L′′ is obtained from L by replacing the ith component with
two of its parallels, which are colored with ni − 1 and 2.

Skein relations:

(a) The first skein relation is U = q
1
2 + q− 1

2 , where U denotes the unknot
with framing zero and color 2.

(b) Let LR , LV and LH be unoriented framed links with colors 2 which are
identical except in a disc where they are as shown in Fig. 3. Then the

second skein relation is LR = q
1
4 LV + q− 1

4 LH if the two strands in the
crossing come from different components of LR , and LR = ε(q

1
4 LV −

q− 1
4 LH) if the two strands come from the same component of LR , pro-

ducing a crossing of sign ε = ±1 (i.e. appearing as in Lε of Fig. 3 if LR

is oriented).

We denote by S(D3 \ T ) the quotient of S̃(D3 \ T ) by these relations. It is
known as the skein module of D3 \ T (compare [26, 27] and [4]). Recall that
the ground ring is Z[q±1/4].

Using the cabling relations, we can reduce all colors of L in S(D3 \ T ) to
be 2. Note that the skein module S(C \ In) has a natural algebra structure,
given by putting one cube on the top of the other. Let us denote by An the
subalgebra of this skein algebra generated by good morphisms.

For a set γ = (γ1, . . . , γn) ∈ (Z/2Z)n let Wγ be a simple closed curve
encircling the end points of those downward arrows with γi = 1. See Fig. 4
for an example.

Similarly to the case of Kauffman bracket skein module [4], one can easily
prove the following.

Lemma A.7 The algebra An is generated by 2n curves Wγ .
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Fig. 4 The element
W(1,1,0,1,0)

Using linearity, we can extend the definition of JX to X = T 
 L, where
L is any element of S̃(D3 \ T ). It is known that JX is invariant under the
cablings and skein relations (Theorem 4.3 of [12]), hence JX is defined for
L ∈ S(D3 \ T ). Moreover, we have

Lemma A.8 Both gradings grε and grq are preserved under the cabling and
skein relations.

Proof The statement is obvious for the ε-grading. For the q-grading, notice
that

grq(L) = 2
∑

1≤i<j≤m

pijn
′
in

′
j +

∑

1≤j≤m

pjjn
′2
j + 2

∑

1≤j≤m

(pjj + 1)n′
j ,

and therefore grq(L′′) ≡ grq(L′) ≡ grq(L) (mod 4). This takes care of the
cabling relations.

Let us now assume that all colors of L are equal to 2 and therefore

grq(L) = 2
∑

1≤i<j≤m

pij + 3
m
∑

i=1

pii + 2m.

The statement is obvious for the first skein relation. For the second skein
relation, choose an arbitrary orientation on L. Let us first assume that the two
strands in the crossing depicted in Fig. 3 come from the same component
of LR and that the crossing is positive. Then, LV and LH have one positive
self-crossing less, and LV has one link component more than LR . Therefore

grq(q
1
4 LV ) = grq(LR) − 3 + 2 + 1 ≡ grq LR (mod 4),

grq(q
− 1

4 LH) = grq(LR) − 3 − 1 ≡ grq LR (mod 4).

It is obvious, that this does not depend on the orientation of LR . If the crossing
of LR is negative or the two strands do not belong to the same component of
LR , the proof works similar. �
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Basic good morphisms

Let Zn be Wγ for γ = (1,1, . . . ,1) ∈ (Z/2Z)n.

Zn =

Proposition A.9 One has a presentation

JZn =
∑

z
(n)
i1

⊗
∑

z
(n)
i2

⊗ · · · ⊗
∑

z
(n)
i2n

,

such that z
(n)
i2j−1

z
(n)
i2j

∈ v U 1
q for every j = 1, . . . , n.

Corollary A.10 JZn satisfies Proposition A.6.

Proof Assume x ∈ U ε1
q ⊗ · · · ⊗ U εn

q , then we have

JZn(x) =
∑

z
(n)
i1

x1z
(n)
i2

⊗ · · · ⊗
∑

z
(n)
i2n−1

xnz
(n)
i2n

.

Hence, by Proposition A.9, we get

JZn(x) ∈ q1/2
(

U ε′
1

q ⊗ · · · ⊗ U ε′
n

q

)

,

where (ε′
1, . . . , ε

′
m) = (ε1, . . . , εn) + (1,1, . . . ,1).

The claim follows now from the fact that grε(Zn) = (1,1, . . . ,1) and
grq(L) = 2. �

A.3 Proof of Proposition A.9

The statement holds true for JZ1 = C ⊗ id↑. Now Lemma 7.4 in [8] states
that applying � to the ith component of the universal quantum invariant of
a tangle is the same as duplicating the ith component. Using this fact we
represent

JZn+1 = (1b⊗n−1 ⊗ � ⊗ id↑)(JZn), (A.3)

where � is defined as follows. For x ∈ Uq with �(x) =∑x(1) ⊗ x(2), we put

�(x) :=
∑

(x),m,n

x(1) ⊗ βmS(βn) ⊗ αnx(2)αm
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where the R-matrix is given by R =∑l αl ⊗ βl . See figure below for a pic-
ture.

We are left with the computation of the ε-grading of each component
of �(x).

In Uq , in addition to the ε-grading, there is also the K-grading, defined by
|K| = |K−1| = 0, |e| = 1, |F | = −1. In general, the co-product � does not
preserve the ε-grading. However, we have the following.

Lemma A.11 Suppose x ∈ Uq is homogeneous in both ε-grading and K-gra-
ding. Then we have a presentation

�(x) =
∑

(x)

x(1) ⊗ x(2),

where each x(1), x(2) are homogeneous with respect to the ε-grading and K-
grading. In addition, for x ∈ U ε

q , we have x(2) ∈ U ε
q and x(1) K

−|x(2)| ∈ U ε
q .

Proof If the statements hold true for x, y ∈ Uq , then they hold true for xy.
Therefore, it is enough to check the statements for the generators e, F̃ (1),

and K , for which they follow from explicit formulas of the co-product. �

Lemma A.12 Suppose x ∈ Uq is homogeneous in both ε-grading and
K-grading. There is a presentation

�(x) =
∑

xi0 ⊗ xi1 ⊗ xi2

such that each xij is homogeneous in both ε-grading and K-grading, and for
x ∈ U ε

q , xi2 and xi0 xi1 belong to U ε
q .

Proof We put D =∑D′ ⊗ D′′ := v
1
2 H⊗H . Using (see e.g. [7])

R = D

(

∑

n

q
1
2 n(n−1)F̃ (n)K−n ⊗ en

)

,
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we get

�(x) =
∑

(x),n,m

q
1
2 (m(m−1)+n(n−1))x(1) ⊗ D′′

2emS(D′′
1en)

⊗ D′
1F̃

(n)K−nx(2)D
′
2F̃

(m)K−m

=
∑

(x),n,m

(−1)nq− 1
2 m(m+1)−n(|x(2)|+1)x(1) ⊗ emenK−|x(2)|

⊗ F̃ (n)x(2)F̃
(m),

where we used (id⊗S)D = D−1 and D±1(1 ⊗ x) = (K±|x| ⊗ x)D±1 for
homogeneous x ∈ Uq with respect to the K-grading. Now, the claim follows
from Lemma A.11. �

By induction on n in (A.2), given that C ∈ vU 1
q , Lemma A.12 implies

Proposition A.9. �
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